C Programming Basic – week 10

Topics of this week

- Elementary Sorting Algorithm
 - Insertion sort
 - Selection sort
 - Bubble sort (Exchange sort)
- Heap sort

Insertion sort

- Strategy of Card Players
- Sorts list by
 - Finding first unsorted element in list
 - Moving it to its proper position
 - -Efficiency: $O(n^2)$

unsorted

Insertion Sort

```
void insertion sort(element list[], int n)
  int i, j;
  element next;
  for (i=1; i<n; i++) {
    next= list[i];
    for (j=i-1;j>=0 \&\& next.key<
 list[j].key;
         j--)
      list[j+1] = list[j];
    list[j+1] = next;
```

Selection sort

- Sorts list by
 - Finding smallest (or equivalently largest) element in the list
 - Moving it to the beginning (or end) of the list by swapping it with element in beginning (or end) position

Selection sort

```
void selection(element a[], int n)
  { int i, j, min, tmp;
    for (i = 0; i < n-1; i++) {
       min = i;
        for (j = i+1; j \le n-1; j++)
            if (a[j].key < a[min].key)
          min = j;
       tmp= a[i];
       a[i] = a[min]);
       a[min] = tmp;
```

Exercise 10.1

- Assuming that you make a mobile phone's address book.
- Write a program that can store 100 structure data with name and phone number and e-mail address.
- Read 10 data from an input file to this structure, and write the data that is sorted in ascending order into an output file.
- Use insertion sort and selection sort
- (1) Using Array of structure
- (2) Using singly-linked list or doubly-linked list.
- Print out the number of comparisons made during the sorting process of each algorithm.

- Heap: a binary tree which
 - The root is guaranteed to hold largest node in tree
 - Smaller values can be on either right or left sub-tree
 - The tree is complete or nearly complete
 - Key value of each node is= to key value in each descendent

Array interpreted as a binary tree

1 2 3 4 5 6 7 8 9 10 26 5 77 1 61 11 59 15 48 19

Heap sort illustration

Heap sort illustration


```
void adjust(element list[], int root, int n)
  int child, rootkey; element temp;
  temp=list[root];     rootkey=list[root].key;
  child=2*root;
  while (child <= n) {
    if ((child < n) &&
        (list[child].key < list[child+1].key))</pre>
           child++;
    if (rootkey > list[child].key) break;
    else {
      list[child/2] = list[child];
      child *= 2;
                                                2i+1
  list[child/2] = temp;
```

```
void heapsort(element list[], int n)
 ascending order (max heap)
    int i, j;
    element temp;
                               bottom-up
    for (i=n/2; i>0; i--) adjust(list, i,
                               n-1 cylces
 n);
    for (i=n-1; i>0; i--) {
        SWAP (list[1], list[itdpldovtemp);
        adjust(list, 1, i);
```

Max heap following first for loop of heapsort

Exercise 10.2

- Assuming that you make a mobile phone's address book.
- Write a program that can store 100 structure data with name and phone number and e-mail address.
- Read the 10 data from an input file to this structure, and write the data that is sorted in ascending order into an output file.
- Use the heap sort. Print out the number of comparisons.

Exercise 10.3

- Write a program to initiate an array of 500 integers by using random function.
- Sort this array using insertion sort and heap sort. Calculate the running time of program in each case and print out the results.

Hints

- function for generating random numbers: srand(time(NULL)) and rand()
- Time functions

```
#include <time.h>
time_t t1,t2;
time(&t1);
/* Do something */
time(&t2);
durationinseconds = (int) t2 -t1;
```

Exercise 10.4

- Input 10 words from the standard input, for each word:
- Load the word to a character type array.
- Sort the array by insertion sort, and output the sorted array into the standard output.

Hints

- You can write a program that processes in the following order.
 - 1. Declare char data[10].
 - Read every 1 word from the standard input by fgetc() function and load it on the array "data".
 - 3. Do the insertion sort to the array "data"
 - 4. Output every 1 word of the value of the sorted array "sort" by fputc() function.

Homework 1

- Declare an array of 2 millions integers
- Using random function to initialize array values
- Write a program in menu
 - 1. (re)Create data
 - -2. Insertion sort
 - 3. Selection sort
 - 4. Bubble srot
 - 5. Heap sort
- Print out sorting time for each algorithm

Homework 2

 From file NokiaDB.dat, read data record and sort by model name using Heap sort.