
C Programming Basic - C Programming Basic -
week 9week 9

2

TopicsTopics
• How to build programs using

makefile utility
• Tree traversal

–Depth first search
• Preorder traversal
• Inorder traversal
• Postorder traversal

–Breadth first search.
• Exercises

3

Makefile - motivationMakefile - motivation
• Small programs single file
• “Not so small” programs :

– Many lines of code
– Multiple components
– More than one programmer

• Problems:
– Long files are harder to manage
 (for both programmers and machines)
– Every change requires long compilation
– Many programmers cannot modify the
 same file simultaneously

4

Makefile - motivationMakefile - motivation
• Small programs single file
• “Not so small” programs :

– Many lines of code
– Multiple components
– More than one programmer

• Problems:
– Long files are harder to manage
 (for both programmers and machines)
– Every change requires long compilation
– Many programmers cannot modify the
 same file simultaneously

5

Makefile - motivationMakefile - motivation
• Solution : divide project to multiple files
• Targets:

– Good division to components
– Minimum compilation when something is
 changed
– Easy maintenance of project structure,
 dependencies and creation

6

Project maintenanceProject maintenance
• Done in Unix by the Makefile mechanism
• A makefile is a file (script) containing :

– Project structure (files, dependencies)
– Instructions for files creation

• The make command reads a makefile,
understands the project structure and
makes up the executable

• Note that the Makefile mechanism is not
limited to C programs

7

Project structureProject structure
• Project structure and dependencies can

be represented as a DAG (= Directed
Acyclic Graph)

• Example :
– Program contains 3 files
– main.c., sum.c, sum.h
– sum.h included in both .c files
– Executable should be the file sum

8

sum (exe)

sum.omain.o

sum.csum.h sum.hmain.c

9

makefilemakefile
sum: main.o sum.o

gcc –o sum main.o sum.o

main.o: main.c sum.h

gcc –c main.c

sum.o: sum.c sum.h

gcc –c sum.c

10

Rule syntaxRule syntax

main.o: main.c sum.h
gcc –c main.c

tab

dependency action

Rule

11

Equivalent makefilesEquivalent makefiles
• .o depends (by default) on

corresponding .c file. Therefore,
equivalent makefile is:

sum: main.o sum.o
gcc –o sum main.o sum.o

main.o: sum.h
gcc –c main.c

sum.o: sum.h
gcc –c sum.c

12

Equivalent makefiles - continuedEquivalent makefiles - continued
• We can compress identical dependencies

and use built-in macros to get another
(shorter) equivalent makefile :

sum: main.o sum.o

gcc –o $@ main.o sum.o

main.o sum.o: sum.h

gcc –c $*.c

13

Binary Tree TraversalBinary Tree Traversal
• Many binary tree operations are done

by performing a traversal of the
binary tree

• In a traversal, each element of the
binary tree is visited exactly once

• During the visit of an element, all
action (make a clone, display,
evaluate the operator, etc.) with
respect to this element is taken

14

Binary Tree TraversalBinary Tree Traversal

J

IM

HL

 A

B

 C

 D

 E

 F G K

15

DFSDFS
• Depth-first search (traversal): This

strategy consists of searching deeper
in the tree whenever possible.

• Tree types:
–Preorder
–Inorder
–Postorder

16

Inorder TraversalInorder Traversal
• Visit the nodes in the left subtree, then visit the root of the

tree, then visit the nodes in the right subtree

Tree

'J'

'E'

'H''A'

'T'

'Y''M'

Print left subtree first Print right subtree last

A E H J M T Y

17

Function inorderprintFunction inorderprint
void inorderprint(TreeType tree)
{
if (tree!=NULL)
{
inorderprint(tree->left);
printf("%4d\n",tree->Key);
inorderprint(tree->right);
}

}

18

Postorder TraversalPostorder Traversal
• Visit the nodes in the left subtree, then visit the nodes in

the right subtree, then visit the root of the tree

Tree

'J'

'E'

'H''A'

'T'

'Y''M'

Print left subtree first Print right subtree second

A H E M Y T J
Print last

19

Function postorderprintFunction postorderprint
void postorderprint(TreeType tree)
{
if (tree!=NULL)
{
postorderprint(tree->left);
postorderprint(tree->right);
printf("%4d\n",tree->Key);
}

}

20

Preorder TraversalPreorder Traversal
• Visit the root of the tree first, then visit the nodes in the

left subtree, then visit the nodes in the right subtree

Tree

'J'

'E'

'H''A'

'T'

'Y''M'

Print left subtree second Print right subtree last

J E A H T M Y
Print first

21

Pre_orderPre_order

 Pre-order
– Root
– Left sub-tree
– Right sub-tree

x A + x + B C x D E F






L R L L R





22

Function preorderprintFunction preorderprint
void preorderprint(TreeType tree)
{
if (tree!=NULL)
{
printf("%4d\n",tree->Key);
preorderprint(tree->left);
preorderprint(tree->right);
}

}

23

Exercise 9.1Exercise 9.1
• Return to the exercise lastweek. We

have already a tree for storing Phone
address book.

• Now output all the data stored in the
binary tree in ascending order for the
e-mail address.

24

HintHint
• Just use the InOrderTraversal()

25

Iterative Inorder TraversalIterative Inorder Traversal
void iter_inorder(TreeType node)
{
 int top= -1; /* initialize stack */
 TreeType stack[MAX_STACK_SIZE];
 for (;;) {
 for (; node; node=node->left)
 add(&top, node);/* add to stack */
 node= delete(&top);/*delete from stack*/

 if (node==NULL) break;/* stack is empty */

 printf(“%d”, node->key);
 node = node->right;
 }
}

26

Exercise 9.2Exercise 9.2
• Output all the data stored in the

binary tree in ascending dictionnary
order for the name in the Phone
Book Tree:
–to screen.
– to a file.

27

Breadth First SearchBreadth First Search
• Instead of going down to children

first, go across to siblings
• Visits all nodes on a given level in

left-to-right order

28

Breadth First SearchBreadth First Search
• To handle breadth-first search, we

need a queue in place of a stack
• Add root node to queue
• For a given node from the queue

–Visit node
–Add nodes left child to queue
–Add nodes right child to queue

29

Pseudo AlgorithmPseudo Algorithm
void breadth_first(TreeType node)
{
 QueueType queue; // queue of pointers
 if (node!=NULL) {
 enq(node,queue);
 while (!empty(queue)) {
 node=deq(queue);
 printf(node->key);
 if (node->left !=NULL)
 enq(node->left,queue);
 if (node->right !=NULL)
 enq(node->right,queue);
 }
 }
}

30

Exercise 9.3Exercise 9.3
• Implement BFS algorithm in C

language
• Add this function to the binary tree

library
• Test the Phone Book management

program to print all the names in the
tree.

• Output the results to a file

31

Homework 1Homework 1

• Write a program to build a
tournament: a binary tree where
the item in every internal node is a
copy of the larger of the items in its
two children. So the root is a copy
of largest item in the tournament.
The items in the leaves constitute
the data of interest.

• The input items are stored in an
array.

• Hint: Uses a divide and conquer

strategy

32

Exercise 9.4Exercise 9.4
• Write to a program WordCount which reads a text file, then

analyzes the word frequencies. The result is stored in a file.
When user provide a word, program should return the
number of occurrences of this word in the file.

• For example, suppose the input files has the following

contents: A black black cat saw a very small mouse and a very
scared mouse.

• The word frequencies in this file are as follows:

AND 1
CAT 1
SAW 1
SCARED 1

SMALL 1
BLACK 2
MOUSE 2
VERY 2
A 3

33

HintHint
• Use a binary search tree to store data.
• A node in this tree should contain at least two

fields:
– word: string
– count: int

• Words are stored in nodes in the dictionary order.

CAT 1

SCARED 1

