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1. gdb1. gdb for debugging (1) for debugging (1)

• gdb: the  Gnu DeBugger

• http://www.cs.caltech.edu/courses/cs11/

material/c/mike/misc/gdb.html

• Use when program core dumps

• or when want to walk through execution 

of program line-by-line



4

gdbgdb for debugging (2) for debugging (2)

• Before using gdb:

–Must compile C code with additional flag: 

-g

–This puts all the source code into the 

binary executable

• Then can execute as: gdb myprogram

• Brings up an interpreted environment
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gdbgdb for debugging (3) for debugging (3)

gdb> run

• Program runs...

• If all is well, program exits successfully, 

returning you to prompt

• If there is (e.g.) a core dump, gdb will 

tell you and abort the program
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gdbgdb – basic commands (1) – basic commands (1)

• Stack backtrace ("where")

–Your program core dumps

–Where was the last line in the program 

that was executed before the core 

dump?

–That's what the where command tells 

you
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gdbgdb – basic commands (2) – basic commands (2)
gdb> where

#0 0x4006cb26 in free () from /lib/libc.so.6

#1 0x4006ca0d in free () from /lib/libc.so.6

#2 0x8048951 in board_updater (array=0x8049bd0, 

ncells=2) at 1dCA2.c:148

#3 0x80486be in main (argc=3, argv=0xbffff7b4) at 

1dCA2.c:44 

#4 0x40035a52 in __libc_start_main () from 

/lib/libc.so.6

stack backtrace

last call in your codelast call
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gdbgdb – basic commands (3) – basic commands (3)
• Look for topmost location in stack 

backtrace that corresponds to your code

• Watch out for

– freeing memory you didn't allocate

– accessing arrays beyond their maximum 

elements

– dereferencing pointers that don't point to part 

of a malloc()ed block
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gdbgdb – basic commands (4) – basic commands (4)
• break, continue, next, step commands

• break causes execution to stop on a given line

gdb> break foo.c: 100    (setting a 

breakpoint)

• continue resumes execution from that point

• next executes the next line, then stops

• step executes the next statement

– goes into functions if necessary (next doesn't)
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gdbgdb – basic commands (5) – basic commands (5)
• print and display commands

• print prints the value of any program 

expression

gdb> print i

$1 = 100

• display prints a particular value every time 

execution stops

gdb> display i
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gdbgdb – printing arrays (1) – printing arrays (1)
• print will print arrays as well

int arr[] = { 1, 2, 3 };

gdb> print arr

$1 = {1, 2, 3}

• N.B. the $1 is just a name for the result

print $1

$2 = {1, 2, 3}
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gdbgdb – printing arrays (2) – printing arrays (2)

• print has problems with dynamically-allocated 

arrays

int *arr;

arr = (int *)malloc(3 * sizeof(int));

arr[0] = 1; arr[1] = 2; arr[2] = 3;

gdb> print arr

$1 = (int *) 0x8094610

• Not very useful...
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gdbgdb – printing arrays (3) – printing arrays (3)

• Can print this array by using @ (gdb special syntax)

int *arr;

arr = (int *)malloc(3 * sizeof(int));

arr[0] = 1; arr[1] = 2; arr[2] = 3;

gdb> print *arr@3

$2 = {1, 2, 3}
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gdbgdb – abbreviations – abbreviations

• Common gdb commands have abbreviations

p (same as print)

c (same as continue)

n (same as next)

s (same as step)

• More convenient to use when interactively 

debugging
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other instructionother instruction
• clear : delete break point of current file.
• delete [break position]: delete breakpoint 

at a specific file and position
• Conditional break

gdb> break foo.c: 100 if i==-1

• quit

• run: restart from beginning.
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2. Binary tree

• Linked lists are linear structures and it is 
difficult to use them to organize an hierarchical 
representation of objects

• Although stacks and queues reflect some 
hierarchy, they are limited to only one 
dimension

• To overcome this limitation, we create a new 
data type called a tree that consists of nodes 
and arcs. Unlike natural trees, these trees are 
depicted upside down with the root at the top 
and the leaves at the bottom.
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Family TreeFamily Tree
Root

leaf

Gill Tansey

Brunhilde

Tweed Zoe

Terry

Honey Bear

Crocus Primrose

Coyote

Nous Belle

Nugget

Brandy

Dusty
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Definition of treeDefinition of tree
• A tree is a finite set of one or more nodes 

such that:
• There is a specially designated node called 

the root.
• The remaining nodes are partitioned into 
n>=0 disjoint sets T1, … , Tn, where each 
of these sets is a tree.

• We call T1, ..., Tn the subtrees of the root.
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Recursive definitionRecursive definition

T5T1 T2 T3 T4

Root of 
Tree T

SubTree
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Binary TreeBinary Tree
• A binary tree is a tree in which no 

node can have more than two 
children.

• Each node has 0, 1, or 2 children
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Linked RepresentationLinked Representation
• Each tree node is represented as an object 

whose data type is 
• The space required by an n node binary 

tree is n * (space required by one node)

typedef ... elmType;
//whatever type of element
typedef struct nodeType {

elmType element;
struct nodeType *left, *right;

};
typedef struct nodeType *treeType;

element (data)

left child   right 
child
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A linked binary treeA linked binary tree
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Binary Tree ADTBinary Tree ADT
• makeNullTree(treeType *t)
• creatNewNode()
• isEmpty()
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Tree initialization and Tree initialization and 
verificationverification

typedef  …  elmType;
typedef struct nodeType {

elmType element;
struct nodeType *left, *right;

} node_Type;

typedef struct nodeType *treeType;

void makeNullTree(treeType *T){ 
(*T)=NULL; 
} 
int emptyTree(treetype T){ 
return T==NULL; 

}
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Access left and right childAccess left and right child
treeType leftChild(treeType n)
{ 
if (n!=NULL) return n->left; 
else return NULL;

}
treeType rightChild(treeType n)
{ 
if (n!=NULL) return n->right;
else return NULL;

}
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Create a new nodeCreate a new node
nodeType *createNode(elmType NewData)
{ 
nodeType *N;
N=(nodeType*)malloc(sizeof(nodeType));
if (N != NULL)
{ 

N->left = NULL;
N->right = NULL;
N->element = NewData;

}
return N;

}
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Check if a node is a leafCheck if a node is a leaf
int isLeaf(treeType n){

if(n!=NULL) 
return(leftChild(n)==NULL)&&

        (rightChild(n)==NULL); 

else return -1; 

} 
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Recursive processing:Recursive processing:
Number of nodesNumber of nodes

• As tree is a recursive data structure, 
recursive algorithms are usefuls when they 
are applied on tree.

int nb_nodes(treetype T){ 

if(EmptyTree(T)) return 0; 

else return 1+nb_nodes(LeftChild(T))+ 

nb_nodes(RightChild(T)); 

} 
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Creat a tree from two sub-Creat a tree from two sub-
treestrees

treetype createfrom2(elmtype v, 
treetype l, treetype r){ 
treetype N; 
N=(node_type*)malloc(sizeof(node_typ
e));
N->element=v;
N->left=l; 
N->right=r;

  return N;
}
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Adding a new node to the Adding a new node to the 
left most positionleft most position

treetype Add_Left(treetype *Tree, elmtype NewData)
{ node_type *NewNode = Create_Node(NewData);

if (NewNode == NULL) return (NewNode);

if (*Tree == NULL)

*Tree = NewNode;

else{

node_type *Lnode = *Tree;

while (Lnode->left != NULL)

Lnode = Lnode->left;

Lnode->left = NewNode;

}

return (NewNode);

}
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Adding a new node to the Adding a new node to the 
right most positionright most position

treetype Add_Left(treetype *Tree, elmtype NewData)
{ node_type *NewNode = Create_Node(NewData);

if (NewNode == NULL) return (NewNode);

if (*Tree == NULL)

*Tree = NewNode;

else{

node_type *Rnode = *Tree;

while (Rnode->right != NULL)

Rnode = Rnode->right;

Rnode->right = NewNode;

}

return (NewNode);

}
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IllustrationIllustration
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Homework 1Homework 1
• Develop the following helper 

functions for a tree: 
–return the height of a binary tree.
– return the number of leafs
–return the number of internal nodes
–count the number of right children.
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Exercise 8.1Exercise 8.1
• A binary tree can represent an arithmetic 

expression: The leaves are operands and the 
other nodes are operators.

• The left and right subtrees of an operator node 
represent subexpressions that must be evaluated 
before applying the operator at the root of the 
subtree.

• For example
!a + (b – c)/d

• Write a program to create a tree
representing this expression

+

/

c

!

b

a  - d 

+

/

c

!

b

a  - d 
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Homework 2Homework 2
• Write an menu program that take a 

valid arithmetic expression as input 
and:
–Store and represent it in a tree
–Evaluate the expression.

+

/

3

*

12

5  - 3 2
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Homework 3Homework 3
• Create file USopen.txt with the 

following content
–Line 1 contains 16 players

• Build binary tree representation 
match results until the final match. 
At first, 16 players are leaf nodes.

• Choose randomly a winner in a 
match.

• Print result to file treegame.txt



37

3. Binary Search Tree3. Binary Search Tree

•Every element has a 
unique key.
•The keys in a 
nonempty left subtree 
(right subtree) are 
smaller (larger) than 
the key in the root of 
subtree.
•The left and right 
subtrees are also 
binary search trees.

v

≤ v ≥ v

BST BST

7

3 9

2 5

7

3 9

2 5 8
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Binary Search Tree Binary Search Tree 
ImplementationImplementation

#include <stdio.h>

#include <stdlib.h>

typedef . . . KeyType; // specify a type 
for the data 

typedef struct Node{

KeyType key; 

struct Node* left,right;

} NodeType;

typedef Node* TreeType; 
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Search on BSTSearch on BST
TreeType Search(KeyType x,TreeType Root){ 

if (Root == NULL) return NULL; // not found

else if (Root->key == x) /* found x */ 

return Root; 

else if (Root->key < x)

//continue searching in the right sub tree 

return Search(x,Root->right); 

else {

  // continue searching in the left sub tree 

return Search(x,Root->left); 

}

}
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Insert a node to BSTInsert a node to BST
• In a binary, there are not two nodes with the same key.

void InsertNode(KeyType x,TreeType *Root ){ 
if (*Root == NULL){

 /* Create a new node for key x */ 
*Root=(NodeType*)malloc(sizeof(NodeType)); 
(*Root)->key = x; 
(*Root)->left = NULL; 
(*Root)->right = NULL; 

} 
else if (x < (*Root)->key) InsertNode(x, 

&(*Root)->left);
else if (x> Root->key) InsertNode(x, &(*Root)-

>right); 
} 
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Insert a node to BSTInsert a node to BST
• Version with the return type

TreeType InsertNode(KeyType x,TreeType Root ){ 
if (Root == NULL){

 /* Create a new node for key x */ 
Root=(NodeType*)malloc(sizeof(NodeType)); 
Root->key = x; 
Root->left = NULL; 
Root->right = NULL;
Return Root; 

} 
else if (x < Root->key) return InsertNode(x, Root->left);
else if (x> Root->key) return InsertNode(x, Root->right); 
} 
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Delete a node from a BSTDelete a node from a BST
• Removing a leaf node is trivial, just set the 

relevant child pointer in the parent node to 
NULL.

• Removing an internal node which has only 
one subtree is also trivial, just set the 
relevant child pointer in the parent node to 
target the root of the subtree.
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Delete a node from a BSTDelete a node from a BST
• Removing an internal node which has 

two subtrees is more complex
– Find the left-most node of the right subtree, 

and then swap data values between it and the 
targeted node.

– Delete the swapped value from the right 
subtree.

 



44

Find the left-most node of Find the left-most node of 
right sub treeright sub tree

• This function find the leftmost node then delete 
it.

KeyType DeleteMin (TreeType *Root ){ 
KeyType k; 
if ((*Root)->left == NULL){ 

k=(*Root)->key; 
(*Root) = (*Root)->right; 
return k; 

} 
else return DeleteMin(&(*Root)->left); 

}
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Delete a node from a BSTDelete a node from a BST
void DeleteNode(key X,TreeType *Root){ 

if (*Root!=NULL) 
if (x < (*Root)->Key) DeleteNode(x, &(*Root)-

>left) 
else if (x > (*Root)->Key)

DeleteNode(x, &(*Root)->right) 
else if 
((*Root)->left==NULL)&&((*Root)->right==NULL) 

*Root=NULL; 
else if ((*Root)->left == NULL)

*Root = (*Root)->right 
else if ((*Root)->right==NULL) 

*Root = (*Root)->left 
else (*Root)->Key = DeleteMin(&(*Root)->right); 

} 
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Pretty print a BSTPretty print a BST
void prettyprint(TreeType tree,char *prefix){

char *prefixend=prefix+strlen(prefix);

if (tree!=NULL){

printf("%04d",tree->key);

if (tree->left!=NULL) if (tree->right==NULL){

printf("\304");strcat(prefix,"     ");

}

else {

printf("\302");strcat(prefix,"\263    ");

}

prettyprint(tree->left,prefix);

*prefixend='\0';

if (tree->right!=NULL) if (tree->left!=NULL){

printf("\n%s",prefix);printf("\300");

} else printf("\304");

strcat(prefix,"     ");

prettyprint(tree->right,prefix);

}

}
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Exercise 8.2Exercise 8.2
• Write a function to delete all node of 

a tree. This function must be called 
before terminating program.
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Exercise 8.3 Exercise 8.3 
• Create a binary search tree with 10 

nodes. Each node contains a random 
integer. 

• Ask user to input a number and 
search for it.

• Print the content of the trees. 
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Exercise 8.4Exercise 8.4
• Write functions FindMin and FindMax 

for BST library
• Argument: root pointer
• Return: pointer to the min/max 

node.
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Exercise 8.5Exercise 8.5
• We assume that you make a mobile phone’s address book.
• Declare a structure which can store at least "name", "telephone 

number", "e-mail address.”. 
• Read 10 addresses from an input file to a BST in increasing order 

of email address
• (1) Find a specified e-mail address print to a file if found.
• (2) Output all the data stored in the binary tree in ascending order 

for the e-mail address.
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Homework 4Homework 4
• Write an program for looking up English-

Vietnamese information technology 
dictionary. Vietnamese without diacritic.

• Instruction: An entry contains English 
workd – Vietnamese meaning.

• Use BST to store.
• Basic functions: search word, add word, 

delete word and write to file.
• Advance: Each word has a list of synonym
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Homework 5Homework 5
• Check search speed of a BST. 
• Generate 1 million random integers and 

insert to BST.
• Print tree height.
• The program allows to:

– Create a new tree (remember to free memory 
for the last tree).

– Search and print out the number of 
comparisons
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Homework 6Homework 6
• Continue the program for NokiaDB.
• Search a mobile model using BST.
• Functions: Import, Insert, Delete, 

Update, Search, Print the list.
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InstructionInstruction
• Separate data structure library (e.g 

BST) and the main program


