
C Programming C Programming
Basic – week 8Basic – week 8

2

1. How to use debugger tool (gdb)

2. Binary tree

3. Binary search tree

4. Recursive processing on Tree

ContentContent

3

1. gdb1. gdb for debugging (1) for debugging (1)

• gdb: the Gnu DeBugger

• http://www.cs.caltech.edu/courses/cs11/

material/c/mike/misc/gdb.html

• Use when program core dumps

• or when want to walk through execution

of program line-by-line

4

gdbgdb for debugging (2) for debugging (2)

• Before using gdb:

–Must compile C code with additional flag:

-g

–This puts all the source code into the

binary executable

• Then can execute as: gdb myprogram

• Brings up an interpreted environment

5

gdbgdb for debugging (3) for debugging (3)

gdb> run

• Program runs...

• If all is well, program exits successfully,

returning you to prompt

• If there is (e.g.) a core dump, gdb will

tell you and abort the program

6

gdbgdb – basic commands (1) – basic commands (1)

• Stack backtrace ("where")

–Your program core dumps

–Where was the last line in the program

that was executed before the core

dump?

–That's what the where command tells

you

7

gdbgdb – basic commands (2) – basic commands (2)
gdb> where

#0 0x4006cb26 in free () from /lib/libc.so.6

#1 0x4006ca0d in free () from /lib/libc.so.6

#2 0x8048951 in board_updater (array=0x8049bd0,

ncells=2) at 1dCA2.c:148

#3 0x80486be in main (argc=3, argv=0xbffff7b4) at

1dCA2.c:44

#4 0x40035a52 in __libc_start_main () from

/lib/libc.so.6

stack backtrace

last call in your codelast call

8

gdbgdb – basic commands (3) – basic commands (3)
• Look for topmost location in stack

backtrace that corresponds to your code

• Watch out for

– freeing memory you didn't allocate

– accessing arrays beyond their maximum

elements

– dereferencing pointers that don't point to part

of a malloc()ed block

9

gdbgdb – basic commands (4) – basic commands (4)
• break, continue, next, step commands

• break causes execution to stop on a given line

gdb> break foo.c: 100 (setting a

breakpoint)

• continue resumes execution from that point

• next executes the next line, then stops

• step executes the next statement

– goes into functions if necessary (next doesn't)

10

gdbgdb – basic commands (5) – basic commands (5)
• print and display commands

• print prints the value of any program

expression

gdb> print i

$1 = 100

• display prints a particular value every time

execution stops

gdb> display i

11

gdbgdb – printing arrays (1) – printing arrays (1)
• print will print arrays as well

int arr[] = { 1, 2, 3 };

gdb> print arr

$1 = {1, 2, 3}

• N.B. the $1 is just a name for the result

print $1

$2 = {1, 2, 3}

12

gdbgdb – printing arrays (2) – printing arrays (2)

• print has problems with dynamically-allocated

arrays

int *arr;

arr = (int *)malloc(3 * sizeof(int));

arr[0] = 1; arr[1] = 2; arr[2] = 3;

gdb> print arr

$1 = (int *) 0x8094610

• Not very useful...

13

gdbgdb – printing arrays (3) – printing arrays (3)

• Can print this array by using @ (gdb special syntax)

int *arr;

arr = (int *)malloc(3 * sizeof(int));

arr[0] = 1; arr[1] = 2; arr[2] = 3;

gdb> print *arr@3

$2 = {1, 2, 3}

14

gdbgdb – abbreviations – abbreviations

• Common gdb commands have abbreviations

p (same as print)

c (same as continue)

n (same as next)

s (same as step)

• More convenient to use when interactively

debugging

15

other instructionother instruction
• clear : delete break point of current file.
• delete [break position]: delete breakpoint

at a specific file and position
• Conditional break

gdb> break foo.c: 100 if i==-1

• quit

• run: restart from beginning.

16

2. Binary tree

• Linked lists are linear structures and it is
difficult to use them to organize an hierarchical
representation of objects

• Although stacks and queues reflect some
hierarchy, they are limited to only one
dimension

• To overcome this limitation, we create a new
data type called a tree that consists of nodes
and arcs. Unlike natural trees, these trees are
depicted upside down with the root at the top
and the leaves at the bottom.

17

Family TreeFamily Tree
Root

leaf

Gill Tansey

Brunhilde

Tweed Zoe

Terry

Honey Bear

Crocus Primrose

Coyote

Nous Belle

Nugget

Brandy

Dusty

18

Definition of treeDefinition of tree
• A tree is a finite set of one or more nodes

such that:
• There is a specially designated node called

the root.
• The remaining nodes are partitioned into
n>=0 disjoint sets T1, … , Tn, where each
of these sets is a tree.

• We call T1, ..., Tn the subtrees of the root.

19

Recursive definitionRecursive definition

T5T1 T2 T3 T4

Root of
Tree T

SubTree

20

Binary TreeBinary Tree
• A binary tree is a tree in which no

node can have more than two
children.

• Each node has 0, 1, or 2 children

21

Linked RepresentationLinked Representation
• Each tree node is represented as an object

whose data type is
• The space required by an n node binary

tree is n * (space required by one node)

typedef ... elmType;
//whatever type of element
typedef struct nodeType {

elmType element;
struct nodeType *left, *right;

};
typedef struct nodeType *treeType;

element (data)

left child right
child

22

A linked binary treeA linked binary tree

23

Binary Tree ADTBinary Tree ADT
• makeNullTree(treeType *t)
• creatNewNode()
• isEmpty()

24

Tree initialization and Tree initialization and
verificationverification

typedef … elmType;
typedef struct nodeType {

elmType element;
struct nodeType *left, *right;

} node_Type;

typedef struct nodeType *treeType;

void makeNullTree(treeType *T){
(*T)=NULL;
}
int emptyTree(treetype T){
return T==NULL;

}

25

Access left and right childAccess left and right child
treeType leftChild(treeType n)
{
if (n!=NULL) return n->left;
else return NULL;

}
treeType rightChild(treeType n)
{
if (n!=NULL) return n->right;
else return NULL;

}

26

Create a new nodeCreate a new node
nodeType *createNode(elmType NewData)
{
nodeType *N;
N=(nodeType*)malloc(sizeof(nodeType));
if (N != NULL)
{

N->left = NULL;
N->right = NULL;
N->element = NewData;

}
return N;

}

27

Check if a node is a leafCheck if a node is a leaf
int isLeaf(treeType n){

if(n!=NULL)
return(leftChild(n)==NULL)&&

 (rightChild(n)==NULL);

else return -1;

}

28

Recursive processing:Recursive processing:
Number of nodesNumber of nodes

• As tree is a recursive data structure,
recursive algorithms are usefuls when they
are applied on tree.

int nb_nodes(treetype T){

if(EmptyTree(T)) return 0;

else return 1+nb_nodes(LeftChild(T))+

nb_nodes(RightChild(T));

}

29

Creat a tree from two sub-Creat a tree from two sub-
treestrees

treetype createfrom2(elmtype v,
treetype l, treetype r){
treetype N;
N=(node_type*)malloc(sizeof(node_typ
e));
N->element=v;
N->left=l;
N->right=r;

 return N;
}

30

Adding a new node to the Adding a new node to the
left most positionleft most position

treetype Add_Left(treetype *Tree, elmtype NewData)
{ node_type *NewNode = Create_Node(NewData);

if (NewNode == NULL) return (NewNode);

if (*Tree == NULL)

*Tree = NewNode;

else{

node_type *Lnode = *Tree;

while (Lnode->left != NULL)

Lnode = Lnode->left;

Lnode->left = NewNode;

}

return (NewNode);

}

31

Adding a new node to the Adding a new node to the
right most positionright most position

treetype Add_Left(treetype *Tree, elmtype NewData)
{ node_type *NewNode = Create_Node(NewData);

if (NewNode == NULL) return (NewNode);

if (*Tree == NULL)

*Tree = NewNode;

else{

node_type *Rnode = *Tree;

while (Rnode->right != NULL)

Rnode = Rnode->right;

Rnode->right = NewNode;

}

return (NewNode);

}

32

IllustrationIllustration

33

Homework 1Homework 1
• Develop the following helper

functions for a tree:
–return the height of a binary tree.
– return the number of leafs
–return the number of internal nodes
–count the number of right children.

34

Exercise 8.1Exercise 8.1
• A binary tree can represent an arithmetic

expression: The leaves are operands and the
other nodes are operators.

• The left and right subtrees of an operator node
represent subexpressions that must be evaluated
before applying the operator at the root of the
subtree.

• For example
!a + (b – c)/d

• Write a program to create a tree
representing this expression

+

/

c

!

b

a - d

+

/

c

!

b

a - d

35

Homework 2Homework 2
• Write an menu program that take a

valid arithmetic expression as input
and:
–Store and represent it in a tree
–Evaluate the expression.

+

/

3

*

12

5 - 3 2

36

Homework 3Homework 3
• Create file USopen.txt with the

following content
–Line 1 contains 16 players

• Build binary tree representation
match results until the final match.
At first, 16 players are leaf nodes.

• Choose randomly a winner in a
match.

• Print result to file treegame.txt

37

3. Binary Search Tree3. Binary Search Tree

•Every element has a
unique key.
•The keys in a
nonempty left subtree
(right subtree) are
smaller (larger) than
the key in the root of
subtree.
•The left and right
subtrees are also
binary search trees.

v

≤ v ≥ v

BST BST

7

3 9

2 5

7

3 9

2 5 8

38

Binary Search Tree Binary Search Tree
ImplementationImplementation

#include <stdio.h>

#include <stdlib.h>

typedef . . . KeyType; // specify a type
for the data

typedef struct Node{

KeyType key;

struct Node* left,right;

} NodeType;

typedef Node* TreeType;

39

Search on BSTSearch on BST
TreeType Search(KeyType x,TreeType Root){

if (Root == NULL) return NULL; // not found

else if (Root->key == x) /* found x */

return Root;

else if (Root->key < x)

//continue searching in the right sub tree

return Search(x,Root->right);

else {

 // continue searching in the left sub tree

return Search(x,Root->left);

}

}

40

Insert a node to BSTInsert a node to BST
• In a binary, there are not two nodes with the same key.

void InsertNode(KeyType x,TreeType *Root){
if (*Root == NULL){

 /* Create a new node for key x */
Root=(NodeType)malloc(sizeof(NodeType));
(*Root)->key = x;
(*Root)->left = NULL;
(*Root)->right = NULL;

}
else if (x < (*Root)->key) InsertNode(x,

&(*Root)->left);
else if (x> Root->key) InsertNode(x, &(*Root)-

>right);
}

41

Insert a node to BSTInsert a node to BST
• Version with the return type

TreeType InsertNode(KeyType x,TreeType Root){
if (Root == NULL){

 /* Create a new node for key x */
Root=(NodeType*)malloc(sizeof(NodeType));
Root->key = x;
Root->left = NULL;
Root->right = NULL;
Return Root;

}
else if (x < Root->key) return InsertNode(x, Root->left);
else if (x> Root->key) return InsertNode(x, Root->right);
}

42

Delete a node from a BSTDelete a node from a BST
• Removing a leaf node is trivial, just set the

relevant child pointer in the parent node to
NULL.

• Removing an internal node which has only
one subtree is also trivial, just set the
relevant child pointer in the parent node to
target the root of the subtree.

43

Delete a node from a BSTDelete a node from a BST
• Removing an internal node which has

two subtrees is more complex
– Find the left-most node of the right subtree,

and then swap data values between it and the
targeted node.

– Delete the swapped value from the right
subtree.

44

Find the left-most node of Find the left-most node of
right sub treeright sub tree

• This function find the leftmost node then delete
it.

KeyType DeleteMin (TreeType *Root){
KeyType k;
if ((*Root)->left == NULL){

k=(*Root)->key;
(*Root) = (*Root)->right;
return k;

}
else return DeleteMin(&(*Root)->left);

}

45

Delete a node from a BSTDelete a node from a BST
void DeleteNode(key X,TreeType *Root){

if (*Root!=NULL)
if (x < (*Root)->Key) DeleteNode(x, &(*Root)-

>left)
else if (x > (*Root)->Key)

DeleteNode(x, &(*Root)->right)
else if
((*Root)->left==NULL)&&((*Root)->right==NULL)

*Root=NULL;
else if ((*Root)->left == NULL)

*Root = (*Root)->right
else if ((*Root)->right==NULL)

*Root = (*Root)->left
else (*Root)->Key = DeleteMin(&(*Root)->right);

}

46

Pretty print a BSTPretty print a BST
void prettyprint(TreeType tree,char *prefix){

char *prefixend=prefix+strlen(prefix);

if (tree!=NULL){

printf("%04d",tree->key);

if (tree->left!=NULL) if (tree->right==NULL){

printf("\304");strcat(prefix," ");

}

else {

printf("\302");strcat(prefix,"\263 ");

}

prettyprint(tree->left,prefix);

*prefixend='\0';

if (tree->right!=NULL) if (tree->left!=NULL){

printf("\n%s",prefix);printf("\300");

} else printf("\304");

strcat(prefix," ");

prettyprint(tree->right,prefix);

}

}

47

Exercise 8.2Exercise 8.2
• Write a function to delete all node of

a tree. This function must be called
before terminating program.

48

Exercise 8.3 Exercise 8.3
• Create a binary search tree with 10

nodes. Each node contains a random
integer.

• Ask user to input a number and
search for it.

• Print the content of the trees.

49

Exercise 8.4Exercise 8.4
• Write functions FindMin and FindMax

for BST library
• Argument: root pointer
• Return: pointer to the min/max

node.

50

Exercise 8.5Exercise 8.5
• We assume that you make a mobile phone’s address book.
• Declare a structure which can store at least "name", "telephone

number", "e-mail address.”.
• Read 10 addresses from an input file to a BST in increasing order

of email address
• (1) Find a specified e-mail address print to a file if found.
• (2) Output all the data stored in the binary tree in ascending order

for the e-mail address.

51

Homework 4Homework 4
• Write an program for looking up English-

Vietnamese information technology
dictionary. Vietnamese without diacritic.

• Instruction: An entry contains English
workd – Vietnamese meaning.

• Use BST to store.
• Basic functions: search word, add word,

delete word and write to file.
• Advance: Each word has a list of synonym

52

Homework 5Homework 5
• Check search speed of a BST.
• Generate 1 million random integers and

insert to BST.
• Print tree height.
• The program allows to:

– Create a new tree (remember to free memory
for the last tree).

– Search and print out the number of
comparisons

53

Homework 6Homework 6
• Continue the program for NokiaDB.
• Search a mobile model using BST.
• Functions: Import, Insert, Delete,

Update, Search, Print the list.

54

InstructionInstruction
• Separate data structure library (e.g

BST) and the main program

