
C Programming C Programming
Basic – week 7Basic – week 7

2

ContentContent

Binary search

3

Binary SearchBinary Search

• Divide-and-conquer strategy
• First, the search item is compared with the

middle element of the list.
• If the search item is less than the middle

element of the list, restrict the search to
the first half of the list.

• Otherwise, search the second half of the
list.

1 3 5 6 10 11 14 25 26 40 41 78

4

Binary SearchBinary Search
• Prerequisit : List is ordered
• Familiar in searching dictionary or

yellow pages

5

ExampleExample
• Searching for a key=78

1 3 5 6 10 11 14 25 26 40 41 78

11 <= 781 3 5 6 10 11 14 25 26 40 41 78

14 25 26 40 41 78 26 <= 78

40 41 78 41 <= 78

78 78 = 78

Need four operations to find out the element.

How many operations in case of sequential search?

6

AlgorithmAlgorithm
int binSearch(int List[], int Target, int Size) {

int Mid, Lo = 0, Hi = Size – 1;
while (Lo <= Hi) {

Mid = (Lo + Hi) / 2;
if (List[Mid] == Target)

return Mid;
else if (Target < List[Mid])

Hi = Mid – 1;
else

Lo = Mid + 1;
}
return -1;

}

7

#include <stdio.h>
#define NotFound (-1)
typedef int ElementType;

int main()
{
 static int A[] = { 1, 3, 5, 7, 9, 13, 15 };
 int SizeofA = sizeof(A) / sizeof(A[0]);
 int i;
 for(i = 0; i < 20; i++)
 printf("BinarySearch of %d returns %d\n",
 i, BinarySearch(A, i, SizeofA));
 return 0;
}

ExampleExample

8

Exercise 7.1Exercise 7.1
• Implement a recursive version of a

binary search function.

9

Big O NotationBig O Notation
• Definition: Suppose that f(n) and g(n) are

nonnegative functions, f(n) is O(g(n)) if there
exists constants C > 0 and N > 0 such that for all
n > N, f(n) ≤ Cg(n).

• f(n) grows at a rate no faster than g(n); thus
g(n) is an upper bound on f(n).

• Big-O expresses an upper bound on the growth
rate of a function, for sufficiently large values of
n.

10

Complexity of search Complexity of search
algorithmalgorithm

• Measure the number of comparison
operations

• Compare results with the problem's
size (size of input data)

• Sequential Search: O(n)

• Binary Search: O(log2n)

11

Exercise 7.2Exercise 7.2
• Define an array of integers, load from 1 to

100 in order to the array.
• Read a number from the standard input,

perform the binary search in the array.
Output "Not Found" if the array does not
contain the number.

• Output the array index at each searching
step. Finally, display the number of
comparisons when the target number is
found.

12

HintHint
• With each comparison:

–increase a global variable counter

13

Execise 7.3Execise 7.3
• Compare running time of recursive

and non-recursive versions of binary
search

14

Dictionary OrderDictionary Order
• The comparison of two strings is

based on dictionnary order.
• Dictionary order:

–'a' < 'd', 'B' < 'M'
–"acerbook" < "addition"
–"Chu Trong Hien" > "Bui Minh Hai"

• Use strcmp() function.

15

Exercise 7.4Exercise 7.4
• Mobile phone address book.
• Declare a structure which can store at least

name, telephone number and e-mail address.
• Declare an array of structures that can handle

100 addresses.
• Read 10 addresses from an input file (sorted by

name in alphabetic order) to the array
• Ask user to enter a name, print out the index of

the first item that matches this name; print out
“Not found” otherwise

