
C Programming C Programming
Basic – week 6Basic – week 6

2

Why Search ?Why Search ?
• Daily activity – yellow pages, universities,

hairdressers
• Computers can search for us
• World wide web – different searching

mechanisms, yahoo.com, ask.co.uk, google.com
• Spreadsheet –list of names – searching

mechanism to find a name
• Databases – use to search for a record - select *

from ...
• Large records –1000s takes time - many

comparison slow system – user won’t wait long
time

3

ContentContent
1. Sequential search
2. Self-organizing searching
3. Binary search

4

1. Sequential search1. Sequential search

• (Linear search)
• Visit all the elements of array from the

beginning
• Compare the key with each element of a

list
• If the search item is found, its index is

returned. If search is unsuccessful, -1 is
returned

• List elements are not necessary to be in
any particular order

5

AlgorithmAlgorithm
int LinearSearch(T M[], int N, T
X){

int k = 0;

while (M[k] != X && k < N) k++;

if (k < N) return k;

return -1;

}

6

ExampleExample
#include<stdio.h>

 int sequential_search(char *items, int count, char key)
 {
 register int t;

 for(t=0; t < count; ++t)
 if(key == items[t]) return t;
 return -1; /* no match */
 }

 int main(void){
 char *str = "asdf";

 int index = sequential_search(str, 4, 's');

 printf("%d",index);

 }

7

SentinelSentinel
• In sequential search, each iteration

requires
– Two conditions to be checked
– One statement to be executed

• We can avoid checking for the end of the
array on every iteration by inserting the
target as an extra ‘sentinel’ element at the
end of the array.

8

AlgorithmAlgorithm
• Search sequentially from position 0

until the target is found (it will
definitely be found).

• If the target is found in position n
then the sentinel has been found –
search has ‘failed’,

• else search was successful, return
first index where target was found.

9

Algorithm (cont)Algorithm (cont)
int LinearSentinelSearch(T M[],
int N, T X){
int k = 0; M[N]=X;
while (M[k] != X)
k++;
return k-1;

}

10

Exercise 6.1Exercise 6.1
• Mobile phone address book.
• Declare a structure "Address" that can hold at

least name, telephone number, and e-mail
address, the program can handle 100 addresses

• Read 10 addresses from an input file, search a
name by sequential search, and write the first
matched address to an output file.
(1) Use an array of structure.
(2) Use singly-linked list or doubly-linked list

11

Exercise 6.2Exercise 6.2
• Read 11 integers from the standard input and assign first

ten integers to an array.
• If the 11th integer is in the array, output the index of the

element. If not, output -1.

12

List verificationList verification
• Compare lists to verify that they are

identical or identify the
discrepancies.

• example
–international revenue service (e.g.,

employee vs. employer)
• complexities
– random order: O(m.n)
– ordered list:

O(tsort(n)+tsort(m)+m+n)

13

Exercise 6.3Exercise 6.3
• Given two lists whose elements are

in the same type. Find :
(a) all records found in list1 but not in

list2
(b) all records found in list2 but not in

list1
(c) all records that are in list1 and list2

with the same key but have different
values for different fields.

14

2. Self-organizing search2. Self-organizing search
• Move-to-front
• Transpose

15

Move-to-frontMove-to-front
int search(int key,int r[], int n){

int i,j;
int temp;
for (i = 0; i < n-1 && r[i] != key; i++);
if (key == r[i]){
if (i > 0){

temp = r[i];
for (j = i-1, j >= 0; j--) r[j+1] = r[j];
r[0] = temp;

}
return i;

}else return -1;
}

16

TransposeTranspose
int search(int key, int r[], int n) {

int i;
int temp;
for (i = 0; i < n && r[i] != key; i++);
if (key == r[i]) {
if (i > 0) {

 /*** Transpose with predecessor ***/
temp = r[i];
r[i] = r[i-1];
r[--i] = temp;

};
return i;

}else return -1;
}

17

Exercise 6.4Exercise 6.4
• Modify search function in the list of

Exercise 6.1 as self-organizing
search
(1) using move-to-front strategy
(2) using transpose strategy

18

Homework 1Homework 1
• Implement move-to-front and

transpose strategy for List library.

• Apply to Nokia DB problem :
– Search and update mobile by model
–Use menu from previous exercises.

19

Homework 2Homework 2
• A dictionary is stored at /usr/share/dict/words
• Write a program that takes a character sequence

and output all the words in the dictionary
beginning with the sequence

 [Example]
 % look computer
 computer
 computerize
 computerized
 computerizes
 computerizing
 computers

