C Programming
Basic — week 5

Topics

e Queue
- Implementation using array
— Implementation using linked list

e EXercises

Queue

e A queue is a waiting line
e Both ends are used: one for adding
elements and one for removing them.

e Data is inserted (enqueued) at the rear,
and removed (dequeued) at the front

Banks'R'Us
(a) A queue (line) of people

Remove Insert
(dequeue) (enqueue)

front rear

(b) A computer queue

Data structure FIFO

e Queue items are removed in exactly the
same order as they were added to the
queue

— FIFO structure: First in, First out

front rear

Operations on queue

e Queue CreateQ(max_qgueue_size) ::=
create an empty queue whose
maximum size is
max_queue_size

e Boolean IsFullQ(gueue, max_queue_size) ::
iIf(number of elements in queue =
max_qgueue_size)
return TRUE
else return FALSE

Operations on queue

e Queue EnQ(gueue, item) ::=
if (IsFullQ(gueue)) gueue_full
else insert item at rear of gueue and
return gueue

e Boolean IsEmptyQ(queue) ::=
If (queue
==CreateQ(max_queue_size))
return TRUE
else return FALSE

e Flement DeQ(qgueue) ::=
iIf (IsEmptyQ(qgueue)) return
else remove and return the item at
front of queue. 6

Implementation using array
and structure

#define MaxLength 100

typedef ... ElementType;

typedef struct {

ElementType Elements [MaxLength];
//Store the elements

int Front, Rear;

} Queue;

Initialize and check the
status

vold MakeNull Queue (Queue *Q) {
O->Front=-1;
O->Rear=-1;
}
int Empty Queue (Queue Q) {
return Q.Front==-1;
}
int Full Queue (Queue Q) {
return (Q.Rear-Q.Front+1)==MaxLength;
}

Enqueue

vold EnQueue (ElementType X,Queue *Q) {
1f (!Full Queue (*Q)) {
1f (Empty Queue (*Q)) O->Front=0;
O->Rear=Q->Rear+1;
O->FElement [Q—->Rear]=X;
}

else printf ("Queue 1s full!");

J

Dequeue

vold DeQueue (Queue *Q) {
1f (!Empty Queue (*Q)) {
O->Front=Q->Front+1;

1f (Q—->Front > Q->Rear)
MakeNull Queue (Q) ;

// Queue become empty

J

else printf ("Queue 1s empty!");

J

10

Implementation 2: regard an array as a circular queue

front: one position counterclockwise from the first element
rear: current end

EMPTY QUEUE
2] [3]
[1] [4]
[0] [5]
front=0 front=0
rear =0 rear =3

11

Problem: one space 1s left when queue 1s full

FULL QUEUE FULL QUEUE

12

Queue is full or not?

int Full Queue (Queue Q) {

return (Q.Rear-Q.Front+l) 3%
MaxLength==0;

J

13

Dequeue

void DeQueue (Queue *Q) {
1f (!Empty Queue (*Q)) {
//if queue contain only one element

1f (Q->Front==0->Rear) MakeNull Queue (Q) ;

else Q->Front=(Q->Front+1l) % MaxLength;
}

else printf ("Queue 1s empty!");

J

14

Enqueue

vold EnQueue (ElementType X, Queue *Q) {
1f (!Full Queue (*Q)) {
1f (Empty Queue (*Q)) O->Front=0;
Q—->Rear=(Q->Rear+l) % MaxLength;
O->Flements[Q—->Rear]=X;

} else printf ("Queue 1s full!");

}

15

Implementation using a List

e Exercise: A Queue, is a list specific.
Implement operations on queue by
reusing implemented operations of
list.

16

Implementation using a List

typedef ... ElementType;
typedef struct Node{
ElementType Element;

Node* Next; //pointer to next element
b

typedef Node* Position;
typedef struct/{

Position Front, Rear;

} Queue;

17

Initialize an empty queue

vold MakeNullQueue (Queue *Q) {

Position Header;
Header=(Node*)malloc (sizeof (Node)) ;

//Allocation Header
Header—->Next=NULL;
O->Front=Header;

O—->Rear=Header;

18

Is-Empty

int EmptyQueue (Queue Q) {

return (Q.Front==0Q.Rear) ;

J

19

EnQueue

vold EnQueue (ElementType X, Queue *Q) {
QO—->Rear—-—>Next=
(Node*)malloc(sizeof (Node)) ;
O—->Rear=Q->Rear—->Next;
O—->Rear—->Element=X;
Q—>Rear—-—>Next=NULL;

20

DeqQueue

void DeQueue (Queue *Q) {

if (!Empty Queue (Q)) {
Position T;
T=0->Front;
O—->Front=Q->Front—->NeXxt;
free(T);

}

else printf ("Error: Queue 1s empty.”);

J

21

Exercise 5.1

We assume that you write a mobile phone’s
address book.

Declare a st!:uc':'ture "Address" that can hold at

least "name", "telephone number" and "e-mail
address”.

Write a program that copies data of an address
book from the file to other file using a queue.
First, read data of the address book from the file
and add them to the queue. Then retrieve data
from the queue and write them to the file in the
order of retrieved. In other words, data read in
first should be read out first and data read in last
should be read out last.

22

Exercise 5.2

e Make a queue that holds integers. The size
of the queue is fixed to 10.

e Read integers separated by spaces from
the standard input, and add them to the
queue. When the program reads the 11th
integer, the queue is already full. So the
program removes the first integer and
adds the 11th integer. Print the removed
integer to the standard output.

e Process all the integers in this way.

23

Exercise 5.3

A plane has 50 rows of seat: ABCDEF

By using a queue, write a Air ticket Booking management
program with a menu for adding, canceling, modifying
requests about ticket from client.
A ticket request has the following fields:

— Flight Number

— Name of client

- Booking Time

- Quantity.

- Seat type: W/C/N (W: C,F C: A, D, N: B,E)
The result is: Accept or Refuse/Wait. If accept - the system

reserve a seat for each ticket end inform the users. The
time field can be the system time at the moment of input.

24

Exercise 5.4

e Simulate a computer that process
computing request from OS’s programs.

e Configuration Input:
— Number of parallel process it can run
- Memory capacity

e Program has the menu:

— Create new program (with a given amount of
necessary memory and ID)

— Kill a program

— Show the status of running and waitting
processes.

25

Homework 1

Bank serves for withdrawal and deposit

Write a program that serves client by port number (each
port is actually a queue)

Program has menu to add client to the bank
— Enter time (9 - 9h->10h, 10 - 10-11h)
— Time for one client is 15min
Output: Client is put into a port with waiting time
The program should calculate waiting time of clients
— Total number of clients
— Total waiting time
- Average waiting time per client

26

Instruction:

e Client information could be in this
format in a file:

e Time Number of clients

e 9:00 2
¢ 9:10 1
e 9:25 3
e 9:40 2

27

Interface

BIDV- Ha Thanh 17 Ta Quang Buu
Number of queue:2

9:00 2

1st client goes to Queue 1 : 0

2nd client goes to Queue 2 : O
9:10 1

1st client goes to Queue 1 : 5 (serve at 9:15)
9:25 3

1st client goes to Queue 2 : O

2nd client goes to Queue 1: 5

3rd client goes to Queue 2: 15

Average: XYZ clients - total and average waiting time

28

Another implementation using array

e Queue CreateQ(max_queue_size) ::=
define MAX_QUEUE_SIZE 100

typedef struct {
int key; /* other fields */
} element;
element queue[MAX_QUEUE_SIZE];
int rear = -1;
int front = -1;
Boolean IsEmpty(queue) ::= front == rear
Boolean IsFullQ(queue) ::= rear ==
MAX_QUEUE_SIZE-1

29

Enqueue

e void enq(int *rear, element item)
{
/* add an item to the queue */
if (*rear == MAX_QUEUE_SIZE 1) {
queue_full();
return;

y

queue [++*rear]

y

item;

30

Dequeue

e element deq(int *front, int rear)

{
if (*front == rear)
return queue_empty();

/* return an error key */
return queue [++ *front];

31

Enqueue

void addq(int front, int *rear, element item)
{
*rear = (*rear +1) % MAX_QUEUE_SIZE;
if (front == *rear) /* reset rear and print
error */
return;

’

queue[*rear] = item;
b

32

Dequeue

element deleteq(int* front, int rear)

{

element item;
if (*front == rear)

return queue_empty();
/* queue_empty returns an error key */

*front = (*front+1) % MAX_QUEUE_SIZE;
return queue[*front];

33

