
C Programming C Programming
Basic – week 2Basic – week 2

2

TopicsTopics

• Structure
• Dynamic memory allocation
• Binary file operations
• Exercises

3

Dynamic AllocationDynamic Allocation
• Array variables have fixed size, used to

store a fixed and known amount of
variables – known at the time of
compilation

• This size can’t be changed after
compilation

• However, we don’t always know in
advance how much space we would need
for an array or a variable

• We would like to be able to dynamically
allocate memory

4

The The mallocmalloc function function
void * malloc(unsigned int nbytes);

• The function malloc is used to
dynamically allocate nBytes in memory

• malloc returns a pointer to the allocated
area on success, NULL on failure

• You should always check whether
memory was successfully allocated

• Remember to #include <stdlib.h>

5

Example -dynamic_reverse_arrayExample -dynamic_reverse_array
int main(void)
{
 int i, n, *p;

 printf("How many numbers do you want to enter?\n");
 scanf("%d", &n);

 /* Allocate an int array of the proper size */
 p = (int *)malloc(n * sizeof(int));
 if (p == NULL)
 {
 printf("Memory allocation failed!\n");
 return 1;
 }
 /* Get the numbers from the user */
 ...
 /* Display them in reverse */
 ...

 /* Free the allocated space */
 free(p);
 return 0;
}

6

Example -dynamic_reverse_arrayExample -dynamic_reverse_array
int main(void)
{
 . . .

 /* Get the numbers from the user */

 printf("Please enter numbers now:\n");

 for (i = 0; i < n; i++)

 scanf("%d", &p[i]);

 /* Display them in reverse */

 printf("The numbers in reverse order are - \n");

 for (i = n - 1; i >= 0; --i)

 printf("%d ",p[i]);

 printf("\n");
 free(p);
 return 0;
}

7

Why casting?Why casting?
The casting in
 p = (int *)malloc(n*sizeof(int));
is needed because malloc returns void * :
void * malloc(unsigned int nbytes);

The type (void *) specifies a general
pointer, which can be cast to any pointer
type.

8

Free the allocated memoryFree the allocated memory

void free(void *ptr);
 We use free(p) to free the allocated

memory pointed to by p
 If p doesn’t point to an area allocated by

malloc, a run-time error occurs
 Always remember to free the allocated

memory once you don’t need it anymore

9

Exercise 2.1Exercise 2.1
• Implement the function my_strcat :

–Input – two strings, s1 and s2
–Output – a pointer to a dynamically

allocated concatenation
–For example: The concatenation of

“hello_” and “world!” is the string
“hello_world!”

• Test your function

10

Structures - User Defined Structures - User Defined
TypesTypes

• A collection of variables under a
single name.

• A convenient way of grouping several
pieces of related information
together.

• Variables in a struct (short for
structure) are called members or
fields.

11

Defining a Defining a structstruct

struct struct-name
{

 field-type1 field-name1;
 field-type2 field-name2;
 field-type3 field-name3;

...
};

12

Example – complex Example – complex
numbersnumbers

struct complex {

 int real;

 int img;

 };

struct complex num1, num2,
num3;

13

• We can combine the typedef with the
structure definition:

typedef struct complex {
 int real;
 int img;
 } complex_t;

complex_t num1, num2;

Typedef Typedef

14

Exercise 2.2Exercise 2.2
• Given two following structure:
typedef struct point
{
 double x;
 double y;
} point_t;

typedef struct circle
{
 point_t center;
 double radius;
} circle_t;

• Write a function is_in_circle which returns 1 if a
point p is covered by circle c. Test this function
by a program.

15

Pointers in StructuresPointers in Structures
• If a member in a struct is a pointer,

all that gets copied is the pointer
(the address) itself

• Exercise: Give this type of Student

16

Working mode for binary fileWorking mode for binary file
mode Description

"rb" opens an existing binary file for reading.

"wb" creates a binary file for writing.

"ab" opens an existing binary file for appending.

"r+b" opens an existing binary file for reading or
writing.

"w+b" creates a binary file for reading or writing.

"a+b" opens or create an existing binary file for
appending.

17

File handle:File handle:
Working with a bloc of data Working with a bloc of data
• Two I/O functions: fread() and

fwrite(), that can be used to perform
block I/O operations.

• As other file handle function, they
work with the file pointer.

18

fread()fread()

• The syntax for the fread() function is

size_t fread(void *ptr, size_t size,
size_t n, FILE *stream);

• ptr is a pointer to an array in which the
data is stored.

• size: size of each array element.
• n: number of elements to read.
• stream: file pointer that is associated with

the opened file for reading.
• The fread() function returns the number of

elements actually read.

19

fwrite()fwrite()

• The syntax for the fwrite() function is

size_t fwrite(const void *ptr, size_t
size, size_t n, FILE *stream);

• ptr is a pointer to an array that contains
the data to be written to an opened file

• n: number of elements to write.
• stream: file pointer that is associated with

the opened file for writing.
• The fwrite() function returns the number

of elements actually written.

20

function feoffunction feof
• int feof(FILE *stream);

• return 0 if the end of the file has not
been reached; otherwise, it returns a
nonzero integer.

21

ExamplesExamples
• Read 80 bytes from a file.

enum {MAX_LEN = 80};

int num;

FILE *fptr2;

char filename2[]= "haiku.txt";

char buff[MAX_LEN + 1];

if ((fptr2 = fopen(filename2, "r")) == NULL){

printf("Cannot open %s.\n", filename2);

reval = FAIL; exit(1);

}

. . . .

num = fread(buff, sizeof(char), MAX_LEN, fin);

buff[num * sizeof(char)] = `\0';

printf("%s", buff);

22

Exercise 2.3Exercise 2.3
• Write a program that use block-

based file operations to copy the
content of lab1.txt to to lab1a.txt

• Use: fread, fwrite, feof

23

Exercise 2.4Exercise 2.4
• Write program mycat that works like

the command cat in Unix
• Using fread funtion.

24

Exercise 2.5Exercise 2.5
• A)Improve the program in previous exercise so

that it accepts the two filenames as command
arguments.

• For example: if your program is named "filecpy".
You can use it as the following syntax (in Linux):

• ./filecpy haiku.txt haiku2.txt

• B. Write a program having the same functionality
as cat command in Linux

• ./cat1 haiku.txt

25

HintHint
• Just use the argc[] et argv[]

if(argc<3) { printf("%s <file1> <file2>n",argv[0]); exit(1); }
• argv[1] and argv[2] will be the name

of source file and destination file.
if((fp=fopen(argv[1],"r"))==NULL) {
…
};
if((fp2=fopen(argv[2],"w"))==NULL) {
…
};

26

Exercise 2.6Exercise 2.6
• We assume that you make a mobile

phone’s address book.
• Define a data structure that can store

"name," "telephone number," "e-mail
address,” and make an array of the
structures that can hold at most 100 of
the data.

• Input about 10 data to this array.
• Write a program to write the array content

using fwrite() into the file for the number
of data stored, and read the data into the
array again using the fread () function.

27

File Random AccessingFile Random Accessing
• Two functions: fseek() and ftell()
• fseek(): function to move the file position indicator to the

spot you want to access in a file.
• Syntax
 fseek(FILE *stream, long offset, int whence);
• Stream is the file pointer associated with an opened file
• Offset indicates the number of bytes from a fixed position
• Whence: SEEK_SET, SEEK_CUR, and SEEK_END

– SEEK_SET: from the beginning of the file
– SEEK_CUR: from the current position
– SEEK_END: from the end of file

28

File Random AccessingFile Random Accessing
• ftell: obtain the value of the current file

position indicator
• Syntax:

long ftell(FILE *stream);

• rewind(): reset the file position indicator
and put it at the beginning of a file

• Syntax:
• void rewind(FILE *stream);

29

Exercise 2.7Exercise 2.7
• Write a program to load a specific portion

of the address book data from the file (for
example, “3rd data to 6th data” or “2nd
data to 3rd data”), modify something on
the data, and finally save the data to the
file again.

• But, you must allocate necessary
minimum memory (the necessary size for
“3rd data to 6th data” is four, while two for
“1st data to 2nd data”) to save the data
by the malloc() function.

30

Homework 1Homework 1
• Access http://thegioididong.vn
• Get all information of Nokia smartphone and write

to a text file NokiaDB.txt . Each line for a phone
with the following format

• Model Memory DisplaySize Price
• Write a program with the following features:

– 1. Import DB from text: convert NokiaDB.txt into
NokiaDB.dat (binary file).

– 2. Import from DB: Read data from binary file.
– 3. Print All Nokia Database: Print all phone data read

from binary file.
– 4. Search by model.
– 5. Exit

