
C Programming C Programming
Basic – week 1Basic – week 1

2

IntroductionIntroduction
• C Programming practice in UNIX

environment.
• Programming topics related to [Data

Structures and Algorithms]
• Compiler: gcc
• Editor: Emacs, K-Developper.

3

gcc syntaxgcc syntax
• Parameter:

-Wall : turn on all alerts
-c: make object file
-o: name of output file
-g: debug information
-l: library

gcc –Wall hello.c –o runhello

./runhello

4

This week: Basic Data This week: Basic Data
Structures and AlgorithmsStructures and Algorithms

• Topic:
–Array, String, Pointer Review
–Read/write text file
–Programming exercises

5

ArrayArray
• A block of many variables of the same

type
• Array can be declared for any type

– E.g. int A[10] is an array of 10 integers.

• Examples:
– list of students’ marks
– series of numbers entered by user
– vectors
– matrices

6

Arrays in MemoryArrays in Memory

• Sequence of variables of specified type
• The array variable itself holds the

address in memory of beginning of
sequence

• Example:
 double S[10];

• The k-th element of array A is specified
by A[k-1] (0-based)

0 1 2 3 4 5 6 7 8 9

S

……

7

Example - reverseExample - reverse
#include <stdio.h>

int main(void)
{
 int i, A[10];

 printf("please enter 10 numbers:\n");
 for(i=0; i<10; i++)
 scanf("%d", &A[i]);

 printf("numbers in reversed order:\n");
 for(i=9; i>=0; i--)
 printf("%d\n", A[i]);

return 0;
}

8

Exercise 1.1Exercise 1.1
• Write a program that gets an input line

from the user (ends with ‘\n’) and displays
the number of times each letter appears in
it.

The output for the input line: “hello, world!”

The letter 'd' appears 1 time(s).
The letter 'e' appears 1 time(s).
The letter 'h' appears 1 time(s).
The letter 'l' appears 3 time(s).
The letter 'o' appears 2 time(s).
The letter 'r' appears 1 time(s).
The letter 'w' appears 1 time(s).

Assume all inputs are lower-case!

9

Exercise 1.2Exercise 1.2
• Implement a function that accepts

two integer arrays and returns 1 if
they are equal, 0 otherwise

• Write a program that accepts two
arrays of integers from the user and
checks for equality

10

StringsStrings
• An array of characters
• Used to store text
• Another way to initialize:
 char str[] = "Text";

's' '#' ' ' 'f' 'd' 'y' '4' '7' '$' '_' 'e' 'g' 'd' '.' 'p' 'v'…. ….

str

'H' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' 'g' 'd' '.' 'p' 'v'…. ….

str

'H' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '\0' 'd' '.' 'p' 'v'…. ….

Terminator

11

StringString
• In order to hold a string of N

characters we need an array of
length N + 1

• So the previous initialization is
equivalent to

char str[] = {'b', 'l', 'a', 'b', 'l',
'a', '\0'};

12

String and character related String and character related
functionfunction

• getchar()
–c = getchar()

• scanf
–scanf("%s", str);

• gets()
–gets(str);

13

String and character related String and character related
functionfunction

– strlen(const char s[])
returns the length of s

– strcmp(const char s1[],
 const char s2[])
compares s1 with s2

– strcpy(char s1[],
 const char s2[])
copies to contents of s2 to s1

14

Exercise 1.3Exercise 1.3
• Write a function that:

– gets a string and two chars
– the functions scans the string and replaces

every occurrence of the first char with the
second one.

• Write a program to test the above function
– the program should read a string from the

user (no spaces) and two characters, then call
the function with the input, and print the
result.

• Example
– input: “papa”, ‘p’, ‘m’
– output: “mama”

15

Pointer - DeclarationPointer - Declaration

• A pointer is declared by adding a
* before the variable name.

• Pointer is a variable that contains
an address in memory.

• The address should be the address
of a variable or an array that we
defined.

type *variable_name;

16

PointersPointers
–Here ptr is said to point to the address

of variable c

C

7 3 4… …

173172 174 175 176 177 178 179 180 181

174 3 4… …

Ptr

833832 834 835 836 837 838 839 840 841

17

Referencing and Referencing and
DereferencingDereferencing

int n;
int *iptr; /* Declare P as a pointer to int */
n = 7;
iptr = &n;

printf(“%d”, *iptr); /* Prints out ‘7’*/
*iptr = 177;
printf(“%d”, n); /* Prints out ‘177’ */
iptr = 177; /* This is unadvisable!! */

18

Exercises 1.4Exercises 1.4
Write a function that accepts a double

parameter and returns its integer
and fraction parts.

Write a program that accepts a
number from the user and prints out
its integer and fraction parts, using
this function.

19

Exercise 1.5Exercise 1.5
• Write a function with the prototype:
void replace_char(char *str,

 char c1,
 char c2);

• It replaces each appearance of c1 by
c2 in the string str.
Do not use the [] operator!

• Demonstrate your function with a
program that uses it

20

Command line argumentsCommand line arguments
• Command line arguments are

arguments for the main function
–Recall that main is basically a function
–It can receive arguments like other

functions
–The ‘calling function’ in this case is the

operating system, or another program

21

‘‘main’ prototypemain’ prototype

• When we want main to accept
command line arguments, we must
define it like this
– argc holds the number of arguments that

were entered by the caller
– argv is an array of pointers to char – an

array of strings – holding the text values of
the arguments

• The first argument is always the
program’s name

int main(int argc, char* argv[])

22

‘‘main’ prototypemain’ prototype

int main(int argc, char* argv[])

argc : 3

argv :

1
7
8
\0

p
r
o
g
n
a
m
e
\0

t
e
x
t
\0

23

Exercise 1.6Exercise 1.6
• Write a program that accepts two

numbers as command line
arguments, representing a
rectangle’s height and width (as
floating-point numbers).

• The program should display the
rectangle’s area and perimeter

24

Homework 1Homework 1
• Write a command line program that

calculates ex with the following
syntax:

• E 50

25

File HandlingFile Handling
• C communicates with files using a

new datatype called a file pointer.

• File pointer:
– references a disk file.
– used by a stream to conduct the operation

of the I/O functions.

• FILE *fptr;

26

4 major operations4 major operations
• Open the file

• Read from a file program

• Write to a file: Program file

• Close the file.

27

Opening a fileOpening a file
• fopen() function.
• FILE *fopen(const char *filename, const

char *mode);

FILE *fptr;
if ((fptr = fopen("test.txt", "r")) ==
NULL){

 printf("Cannot open test.txt file.\n");
 exit(1);
}

28

Opening a fileOpening a file
• filename: name of the file.

– It can be a string literal: “data.txt”
– It may contain the full path of the file:
“/root/hedspi/CProgrammingBasic/Lab1/da
ta.txt”

– It may be a character array that contains the file name:

 char file_name[] = “junk.txt”;

• NOTE: If the file path is not specified, the file is
located in the same folder as the C program.

29

Mode for text fileMode for text file
mode Description

"r" opens an existing text file for reading.

"w" creates a text file for writing.

"a" opens an existing text file for appending.

"r+" opens an existing text file for reading or writing.

"w+" creates a text file for reading or writing.

"a+" opens or create an existing text file for
appending.

30

Mode for binary fileMode for binary file
mode Description

"rb" opens an existing binary file for reading.

"wb" creates a binary file for writing.

"ab" opens an existing binary file for appending.

"r+b" opens an existing binary file for reading or
writing.

"w+b" creates a binary file for reading or writing.

"a+b" opens or create an existing binary file for
appending.

31

Closing a fileClosing a file
• The fclose command can be used to

disconnect a file pointer from a file.

• int fclose(FILE *stream);

32

Example: File Open and CloseExample: File Open and Close
1: /* Opening and closing a file */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL};
5:
6: main(void)
7: {
8: FILE *fptr;
9: char filename[]= "haiku.txt";
10: int reval = SUCCESS;
11:
12: if ((fptr = fopen(filename, "r")) == NULL){
13: printf("Cannot open %s.\n", filename);
14: reval = FAIL;
15: } else {
16: printf("The value of fptr: 0x%p\n", fptr);
17: printf("Ready to close the file.");
18: fclose(fptr);
19: }
20:
21: return reval;
22: }

33

Reading and Writing Disk Reading and Writing Disk
FilesFiles

• In C, you can perform I/O operations in
the following ways:
– Read or write one character at a time.

– Read or write one line of text (that is, one
character line) at a time.

– Read or write one block of characters at a
time.

34

Character based file Character based file
operations in UNIXoperations in UNIX

• Read or write one character at a time.

• Character input and output
– fgetc() and fputc()

• int fgetc(FILE *stream);

• int fputc(int c , FILE *stream);

35

Exercise 1.7Exercise 1.7
• Create a text file name lab1.txt with

the content as you want.
• Write a program to read from a text

file one character at a time, then
write it to a new file with the name
lab1w.txt

36

Homework 2Homework 2
• Write the command cp by your self

to copy a text file to another

• mycp a1.txt a2.txt

37

Exercise 1.8Exercise 1.8
• Write a program to read sentences from a

specified file one character at a time.
• Each capital letter is converted into a

lower-case letter, and each lower-case
letter is converted into a capital letter. The
new sentence is then written into another
file.

• Note that you must output numbers, the
signs as they are.

38

Read/write lineRead/write line
• Two functions: fgets() and fputs()
• char *fgets(char *s, int n, FILE *stream);

– s references an array that is used to store
characters

– n specifies the maximum number of array
elements.

• fgets() function can read up to n-1
characters, and can append a null
character after the last character fetched,
until a newline or an EOF is encountered.

39

Read/write lineRead/write line
• int fputs(const char *s, FILE

*stream);
• s: array that contains the characters

to be written to a file
• return value

– 0 for success
– non zero in case of fail.

40

Exercise 1.9Exercise 1.9
• Redo the exercise F1 but the

program will read and write one
character line at a time.

41

Exercise 1.10Exercise 1.10
• Write a program named mycat that

read and display on the screen the
content of a given file. The command
can take 1 or 2 arguments

• cat <filename> : display content to
the end

• cat <filename> -p : view page by
page.

42

Read/write formated textRead/write formated text
• int fscanf(FILE *stream, const char

*format, ...);
– This function works like scanf except that it

read from a file stream.

• int fprintf(FILE *stream, const char
*format, ...);
– The only difference between fprintf and printf

is that fprintf can redirect output to a particular
stream.

43

Homework 3Homework 3
• Write a program to read a text file created with

emacs. Put a line number to the head of the line
and output the contents of the file to the
standard output. A text file name can be specified
as the argument to the program.

• For example, the following content of a text file
This is sample file.
Hello!

• is output as follows.
1 This is sample file.
2 Hello!

44

Homework 4Homework 4
Write a program to compare two files

given as the command parameters
and indicates:

• the first line where they differ(line
numbers).

• all lines where they differ.

