
C Programming C Programming
Introduction Introduction

Week 5:Week 5:ExpressionsExpressions

Topic of this weekTopic of this week
• ExpressionsExpressions

–Class Lecture Review
•mathematic operators
•boolean operators
•conditional expressions

–Programming Exercises

Expression and Operations
• Arithmetic Operators

– Addition +
– Subtraction -
– Multiplication *
– Division /
– Modulation %

• Example
– fag = x % y;
– c = a – (a/b)*b;
– sum = var1 + var2 + var3;

Expression and Operations

• Operator precedence
–Some arithmetic operators act before

others (i.e., multiplication before
addition)
• Use parenthesis when needed

–Example: Find the average of three
variables a, b and c
• Do not use: a + b + c / 3
• Use: (a + b + c) / 3

Expression and Operations

• Rules of operator precedence:

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

*, /, or % Multiplication Division
Modulus

Evaluated second. If there are several, they re
evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

Decision Making: Equality and
Relational Operators

• Executable statements
– Perform actions (calculations, input/output of data)
– Perform decisions

• May want to print "pass" or "fail" given the value of a test grade

• if control structure
– Simple version in this section, more detail later
– If a condition is true, then the body of the if statement

executed
• 0 is false, non-zero is true

– Control always resumes after the if structure

• Keywords
– Special words reserved for C
– Cannot be used as identifiers or variable names

 Decision Making: Equality and
Relational Operators

• Relational Operators
– Less than < a < 5
– Less than or equal <= a <= b
– More than > a > b + c
– More than or equal>= a >= b + 5
– Equal == a == -6
– Not equal != a != 0

Decision Making: Equality and
Relational Operators

Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

• Using if statements, relational
2 #include <stdio.h>
3
4 int main()
5 {
6 int num1, num2;
7
8 printf("Enter two integers, and I will tell you\n");
9 printf("the relationships they satisfy: ");
10 scanf("%d%d", &num1, &num2); /* read two integers */
11
12 if (num1 == num2)
13 printf("%d is equal to %d\n", num1, num2);
14
15 if (num1 != num2)
16 printf("%d is not equal to %d\n", num1, num2);
17
18 if (num1 < num2)
19 printf("%d is less than %d\n", num1, num2);
20
21 if (num1 > num2)
22 printf("%d is greater than %d\n", num1, num2);
23
24 if (num1 <= num2)
25 printf("%d is less than or equal to %d\n",
26 num1, num2);

Example 1

27

28 if (num1 >= num2)

29 printf("%d is greater than or equal to %d\n",

30 num1, num2);

31

32 return 0; /* indicate program ended successfully */

33 }

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Expression and Operations

• Logical Operators
–AND && (a > 0)

&& (b > 0)
–OR || (a <= 0)

|| (b <= 0)
–Negation ! !(a && c)

Expression and Operations
• Bitwise Operators

– Bitwise AND &
– Bitwise OR (Inclusive OR) |
– Bitwise XOR (Exclusive OR) ^
– Left shift <<
– Right shift >>
– One's complement ~

• Example
– x = 01001011 y = 00101100 ~x

= 10110100
– x & y = 00001000 x | y = 01101111
– x ^ y = 01100111 x << 2 = 00101100

Expression and Operations

• Assignment Operators and Expressions
– op is + - * / % << >> & ^ |

– If expr1 and expr2 are expressions, then

expr1 op= expr2

– Equivalent to

expr1 = (expr1) op (expr2)

• Example
– X += 1;
– X = X + 1;

Equivalen
t

• Conditional Expressions

 expr1 ? expr2 : expr3

– If expr1 is true do expr2
– If expr1 is false do expr3

• Example
– a = 5;

b = 10;

min = a < b ? a : b;

Expression and Operations

• Increment and Decrement Operators
– Pre-increment operation ++variable
– Post-increment operation variable++
– Pre-decrement operation--variable
– Post-decrement operation variable--

• Example
– x = 4;
y = x++ + 5; // x = 5, y = 9

– x = 4;
y = ++x + 5; // x = 5, y = 10

Expression and Operations

• Type Cast Operator (Casting)

 (type-specifier) expression;

• Example
– (double) date;
– fload var1 = 2.7;

int var2 = (int) var1; //var2 = 7
– (char) x;
– (int) d1 + d2;

Expression and Operations

Exercise 5.1
• Write a program that converts

distances from kilometers to miles.
• Ask user to input the kilometers

value then output to screen the miles
value.

Solution
#include <stdio.h>
/* printf, scanf definitions*/

int main(void)
{

double miles, /* distance in miles */
kms; /* equivalent distance in kilometers */

/* Get the distance in kilometers. */
 printf("Enter the distance in kilometers > ");

scanf("%lf", & kms);

/* Convert the distance to miles. */
 miles = 1000 * kms;

/* Display the distance in miles. */
printf("That equals %f miles.\n", miles);
return (0);

 }

• Run the exercise5_2.c program
below to illustrate the operation of
Logical operators and relational
operators.

• Replace b - a == b – c by a = b-c
and then explane the result.

Exercise 5.2

exercise5_2.c
#include <stdio.h>

main()
{
 int a = 5, b = 6, c = 7;
 puts("int a = 5, b = 6, c = 7;\n");

 printf("The value of a > b is \t%i\n\n", a > b);
 printf("The value of b < c is \t%i\n\n", b < c);

 printf("The value of a + b >= c is \t%i\n\n", a + b >= c);
 printf("The value of a - b <= b-c is\t%i\n\n", a - b <=b- c);

 printf("The value of b - a == b - c is\t%i\n\n",b- a==b- c);
 printf("The value of a * b != c * c is\t%i\n\n",a * b<c * c);
}

Exercise 5.3
• Type and compile the exercise5_3.c

below, the program illustrates the
operation of conditional expressions.

• Alter the program by eliminating the
abs and max variables.

exercise5_3.c
#include <stdio.h>
main()
{
 int n, m, abs, max;

 printf("Enter a positive or negative integer: ");
 scanf("%i", &n);

 printf("\nYou entered %i.\n", n);
 abs = n < 0 ? -n : n;
 printf("Its absolute value is %i.\n", abs);

 printf("\nEnter two integers (e.g. 1 2): ");
 scanf("%i %i", &n, &m);

 printf("\nYou entered %i and %i.\n", n, m);
 max = n > m ? n : m;
 printf("%i is the larger value.\n", max);
}

Exercise 5.4
• This example illustrates the integer

overflow that occurs when an
arithmetic operation attempts to
create a numeric value that is larger
than can be represented.

• Type and compile the program to see
the result.

exercise5_4.c
#include <stdio.h>
#include <limits.h>

void main(void)
{
 unsigned int x = UINT_MAX - 1;
 signed int y = INT_MAX - 1;

 printf("x is an unsigned int, occupying %i bytes.\n\n", sizeof(x));

 printf("The initial value of x is %u\n", x);
 x++;
 printf("Add 1; the new value of x is %u\n", x);
 x++;

exercise5_4.c
printf("Add 1; the new value of x is %u\n", x);
 x++;
 printf("Add 1; the new value of x is %u\n", x);

 printf("\ny is a signed int, occupying %i bytes.\n\n", sizeof(y));

 printf("The initial value of y is %i\n", y);
 y++;
 printf("Add 1; the new value of y is %i\n", y);
 y++;
 printf("Add 1; the new value of y is %i\n", y);
 y++;
 printf("Add 1; the new value of y is %i\n", y);

 return;
}

Exercise 5.5
• Write a program that requires user to

input two double values stored in two
variables x,y.

• Use if control structure to examine
all the relation between x and y.

Solution
#include <stdio.h>

main()
{
 double num1, num2;

 printf("Enter two doubles, and I will tell you\n");
 printf("the relationships they satisfy: ");
 scanf("%f%f", &num1, &num2); /* read two integers */

 if (num1 == num2)
 printf("%f is equal to %f\n", num1, num2);

 if (num1 != num2)
 printf(" %f is not equal to %f\n ", num1, num2);

Solution
if (num1 < num2)
 printf("%f is less than %f\n", num1, num2);

 if (num1 > num2)
 printf("%f is greater than %f\n", num1, num2);

 if (num1 <= num2)
 printf("%f is less than or equal to %f\n",
 num1, num2);

 if (num1 >= num2)
 printf("%f is greater than or equal to %f\n",
 num1, num2);

 return 0; /* indicate program ended successfully */
}

Exercise 5.6
• A group of n students is to be divided into 7

classes, as evenly as possible. (No class size
should differ by more than 1 student when
compared to all other class sizes.) Write a C
expression for:
– the number of students in the smallest class
– the number of students in the largest class
– the average number of students per class;
– the number of classes of above average size;
– the number of classes of at most average size;
– the number of students in classes of larger than average

size;
– the number of classes of exactly average size.

Solution
• 7(a) n / 7
• 7(b) (n + 6) / 7 , NOT n / 7 + 1.

– Both expressions give the same result, except when n is
divisible by 7. In this case, n/7+1 gives the wrong
answer.

• 7(c) n / 7.0
• 7(d) n % 7
• 7(e) 7 - n % 7 (would be trickier if asked for

below average ...)
• 7(f) (n % 7) * ((n + 6) / 7)
• 7(g) (n % 7 == 0) * 7 or ! (n % 7) * 7

