

C Programming C Programming
Introduction Introduction

Week 4:Week 4:Variables, Variables,
constant, Standard input constant, Standard input

Topic of this weekTopic of this week
• Variables

–Class Lecture Review
• Variables
• Basic data types
• Constants
• Standard input.

–Programming Exercises

IdentifiersIdentifiers
• Names of things (variables, functions,

etc.)
int nMyPresentIncome = 0;
int DownloadOrBuyCD();

Identifier naming rulesIdentifier naming rules
• Letters, digits, underscores

– i
– CSE_5a
– a_very_long_name_that_isnt_very_useful
– fahrenheit

• First character cannot be a digit
– 5a_CSE is not valid!

• Case sensitive
– CSE_5a is different from cse_5a

What are variables?What are variables?
• A named area in the computer memory,

intended to contain values of a certain
kind (integers, real numbers, etc.)

• They contain the data your program works
with

• They can be used to store data to be used
elsewhere in the program

• In short – they are the only way to
manipulate data

VariablesVariables
• Named region of storage

int nRow = 0;

• Type (size and meaning of the storage)
• Scope

– Block
– Function args
– Global
– Be careful not to “hide” a variable

• Lifetime (storage class)
– Automatic/temporary (block's lifetime)
– Globals (program's lifetime)
– Local static (program's lifetime)

Variables in memoryVariables in memory

5

int my_int = 5;

double my_double = 3.5;

3.5

my_int

my_double

Declarations, definitions, Declarations, definitions,
initializationinitialization

• Declarations that reserve storage are called
definitions
int j;

• Definitions may optionally assign a value
(initialization)
int j = 0;

• Declarations specify meaning but may not reserve
storage (e.g. extern)
extern int j;

• Release builds typically don't initialize
variables by default!

• Usage variables:

e.g: printf(“%d + %d = %d\n“, a, b, c);

Example: variable Example: variable
declarationsdeclarations

• int i;
• char c;
• float f1, f2;
• float f1=7.0, f2 = 5.2;
• unsigned int ui = 0;

ExampleExample
1. #include <stdio.h>
2.
3. int main()
4. {
5. int a, b, c;
6. printf(“The first number: “);
7. scanf(“%d”, &a);
8. printf(“The second number: “);
9. scanf(“%d”, &b);
10. c = a + b;
11. printf(“%d + %d = %d\n“, a, b, c);
12. return 0;
13.}

The first number:

The second number:

5 + 7 = 12

5

7

5

7

12

a

b

c

/ngonnguC/bin/tong

/ngonnguC/bin/

Variables and ConstantsVariables and Constants
• Variables:

– Name for a memory object.
– Used to store values and we can change these values.
– Declaration: Tells compiler about variables and their type

<typename> varname;
e.g:
 int i;
 float x, y, z;
 char c;

– Assignment: <varname> = <value>;
vd:
 i = 4;
 x = 5.4;
 y = z = 1.2;

• Constant: the value is invariable
during the program.
–Declaration constant:

#define <constantname> <value>
example:
 #define TRUE 1
 #define FALSE 0

Variables and Constants (2)Variables and Constants (2)

Constants (1)Constants (1)
• Integer constants

31 /* decimal */
037 /* octal */
0x1F /* hexadecimal */
31L /* long */
31LU /* unsigned long */

• Float constants
123.4 /* double */
123.4F /* float */
123. /* double */
123.F /* float */
123.4L /* long double */
1e-2 /* double */
123.4e-3 /* double */

Constants (2)Constants (2)
• Character constants

'K' /* normal ASCII – 'K' */

'\113' /* octal ASCII – 'K' */

'\x48' /* hexadecimal ASCII – 'K' */

'\n' /* normal ASCII – newline */

'\t' /* normal ASCII – tab */

'\\' /* normal ASCII – backslash */

'\"' /* normal ASCII – double quote */

'\0' /* normal ASCII – null (marks end of string)*/

• String literals
"You have fifteen thousand new messages."

"I said, \"Crack, we're under attack!\"."

"hello," "world" becomes "hello, world"

Basic data types (1)Basic data types (1)
• Sizes and limits (may vary for machine; CUNIX

is shown here):

• float has 6 bits of precision (on CUNIX)
• double has 15 bits of precision (on CUNIX)
• range differs from one machine to another

– int is “native” size

type size in bits
(on CUNIX)

range

char 8 -128...127

short 16 -32,768…32,767

int 32 -2,147,483,648…2,147,483,647

long 32 -2,147,483,648…2,147,483,647

float 32 10-38…3x1038

double 64 2x10-308…10308

Basic data types (2)Basic data types (2)
• You can also have unsigned values:

• Look at /usr/include/limits.h

type size in bits
(on CUNIX)

range

unsigned char 8 0...255

unsigned
short

16 0…65,535

unsigned int 32 0…
4,294,967,295

unsigned long 32 0…
4,294,967,295

Formatting Input with Formatting Input with ScanfScanf
• scanf

– Input formatting
– Capabilities

• Input all types of data
• Input specific characters
• Skip specific characters

• Format
scanf(format-control-string, other-arguments);

– format-control-string - describes formats of inputs
– other-arguments - pointers to variables where input

will be stored
– can include field widths to read a specific number of

characters from the stream

Formatting Input with Formatting Input with ScanfScanf (II) (II)
Conversion specifier Description

Integers

d Read an optionally signed decimal integer. The corresponding argument is a pointer to integer.

i Read an optionally signed decimal, octal, or hexadecimal integer. The corresponding argument is a pointer to integer.

o Read an octal integer. The corresponding argument is a pointer to unsigned integer.

u Read an unsigned decimal integer. The corresponding argument is a pointer to unsigned integer.

x or X Read a hexadecimal integer. The corresponding argument is a pointer to unsigned integer.

h or l Place before any of the integer conversion specifiers to indicate that a short or long integer is to be input.

Floating-point numbers

e, E, f, g or G Read a floating-point value. The corresponding argument is a pointer to a floating-point variable.

l or L Place before any of the floating-point conversion specifiers to indicate that a double or long double value is to be input.

Characters and strings

c Read a character. The corresponding argument is a pointer to char, no null ('\0') is added.

s Read a string. The corresponding argument is a pointer to an array of type char that is large enough to hold the string and a
terminating null ('\0') character—which is automatically added.

Scan set

[scan characters Scan a string for a set of characters that are stored in an array.

Miscellaneous

p Read an address of the same form produced when an address is output with %p in a printf statement.

n Store the number of characters input so far in this scanf. The corresponding argument is a pointer to integer

% Skip a percent sign (%) in the input.

int d,m,y,x;
char ch1,ch2;
float f;
scanf(“%d”, &x); 4

// x=4
scanf(“%2d%2d%4d”, &d,&m,&y); 22062007
 // d=22, m=6, y=2007
scanf(“%d/%d/%d”, &d,&m,&y); 22/06/2007

// d=22, m=6, y=2007
scanf(“%c%c”, &ch1,&ch2); Ab

// ch1=‘A’, ch2=‘b’
scanf(“%f”, &f); 2.3

// f=2.300000

• Example of scanf()

Result

Formatting Input with Formatting Input with ScanfScanf (III) (III)

• Scan sets
– Set of characters enclosed in square brackets []

• Preceded by % sign
– Scans input stream, looking only for characters

in scan set
• Whenever a match occurs, stores character in

specified array
• Stops scanning once a mismatch is found

– Inverted scan sets
• Use a caret ^: [^aeiou]
• Causes characters not in the scan set to be

stored

Formatting Input with Formatting Input with ScanfScanf (IV) (IV)

• Skipping characters
–Include character to skip in format

control
–Or, use * (assignment suppression

character)
•Skips any type of character without
storing it

1 #include <stdio.h>
2
3 int main()
4 {
5 char x, y[9];
6
7 printf("Enter a string: ");
8 scanf("%c%s", &x, y);
9
10 printf("The input was:\n");
11 printf("the character \"%c\" ", x);
12 printf("and the string \"%s\"\n", y);
13
14 return 0;
15}

Enter a string: Sunday
The input was:
the character "S" and the string "unday"

Example 2Example 2
•Reading characters and strings

2 #include <stdio.h>
3
4 int main()
5 {
6 char z[9] = { '\0' };
7
8 printf("Enter a string: ");
9 scanf("%[^aeiou]", z);
10 printf("The input was \"%s\"\n", z);
11
12 return 0;
13}

Enter a string: String
The input was "Str"

Example 3Example 3
•Using an inverted scan set

1 #include <stdio.h>
2
3 int main()
4 {
5 int month1, day1, year1, month2, day2, year2;
6
7 printf("Enter a date in the form mm-dd-yyyy: ");
8 scanf("%d%*c%d%*c%d", &month1, &day1, &year1);
9 printf("month = %d day = %d year = %d\n\n",
10 month1, day1, year1);
10 printf("Enter a date in the form mm/dd/yyyy: ");
14 scanf("%d%*c%d%*c%d", &month2, &day2, &year2);
15 printf("month = %d day = %d year = %d\n",
16 month2, day2, year2);
17
18 return 0;
19}

Enter a date in the form mm-dd-yyyy: 11-18-2000
month = 11 day = 18 year = 2000

Enter a date in the form mm/dd/yyyy: 11/18/2000
month = 11 day = 18 year = 2000

Example 4Example 4
•Reading and discarding characters from the input stream

ExercisesExercises 4.1 4.1
• Write a program that reads a integer

and a double from user, use a
floating-point and an integer variable
to store and then show to screen.

SolutionSolution
#include <stdio.h>

void main (void) {

 /* We will use a floating-point and an integer variable. */

 double x;
 int n;

 /* Read in an integer. */

 printf("Please enter an integer: ");
 scanf("%d", &n);
 printf("The integer was %d\n\n", n);

SolutionSolution
/* Read in a double. */

 printf("Please enter a double: ");
 scanf("%lf", &x);
 printf("The double was %g\n\n", x);

 /* Read in an integer and a double. */

 printf("Please enter an integer and a floating-point number: ");
 scanf("%d%lf", &n, &x);
 printf("The numbers were %d %g\n", n, x);

}

ExercisesExercises 4.2 4.2
• Write and run this program to see

the limit of basic data types: int,
long.

• Widen this program for other basic
data types.

• Use limits.h library to build your
programs.

SolutionSolution
#include <stdio.h>
#include <limits.h> /* defines INT_MIN, INT_MAX, LONG_MIN, LONG_MAX

*/

main()
{
 int j;
 long int k;
 float x;
 double z;

 printf("Enter an integer (between %i and %i): ", INT_MIN, INT_MAX);
 scanf("%i", &j);
 printf("You entered %d\n\n", j);

SolutionSolution
printf("Enter a long integer (between %ld and %ld): ", LONG_MIN,

LONG_MAX);
 scanf("%ld", &k);
 printf("You entered %li\n\n", k);

 printf("Enter a floating point number: ");
 scanf("%f", &x);
 printf("You entered %20.10E\n\n", x);

 printf("Enter a double precision floating point number: ");
 scanf("%lf", &z);
 printf("You entered %20.10E\n\n", z);

 puts("\n\nTry again: enter invalid data and see what happens!");
}

ExercisesExercises 4.3 4.3
• Write a program that reads a string

from the keyboard by using a scan
set.

SolutionSolution
#include <stdio.h>

/* function main begins program execution */
int main(void)
{
 char z[9];

 printf("Enter string: ");
 scanf("%[aeiou]", z); /* search for set of characters */

 printf("The input was \"%s\"\n", z);

 return 0;

}

ExercisesExercises 4.4 4.4
• Write a program that inputs data

with a field width.
• Widen to all basic data types.

SolutionSolution
#include <stdio.h>

int main(void)
{
 int x;
 int y;

 printf("Enter a six digit integer: ");
 scanf("%2d%d", &x, &y);

 printf("The integers input were %d and %d\n", x, y);

 return 0; /* indicates successful termination */

}

Exercise 4.5Exercise 4.5
• Write a program ask user to input

the radius of a circle. Use constant
for PI.
–a) Display its area and circumference.
–b) Now consider the input data is the

radius of a sphere. Display its area and
volume.

SolutionSolution
#include <stdio.h>
#define PI 3.142

main()
{
 double r, c, ac, as, v;
 r = 5.678;
 printf("Radius = %f\n", r);

 c = 2.0 * PI * r;
 printf("Circle's circumference = %f\n", c);

 ac = PI * r * r;
 printf("Circle's area = %f\n", ac);

 as = 4.0 * PI * r * r;
 printf("Sphere's area = %f\n", as);

 v = 4.0/3.0 * PI * r * r * r;
 printf("Sphere's volume = %f\n", v);

}

Exercise 4.6Exercise 4.6
• Write a program that calculates and

displays an employee’s total wages for
week. The regular hours for the work
week are 40 and any hours worked over
40 are considered overtime. The employee
earns 25000 VND per hour for regular
hours, and 40000 VND per hour for
overtime hours. This week employee has
worked 50 hours.

SolutionSolution
#include <stdio.h>

int main()
{
 double regWages, // calculated regular wages
 basePay = 25000, // base pay rate
 regHours = 40.0, // hours worked less overtime
 otWages, // overtime wages
 otPay = 40000, // overtime pay rate
 otHours = 10, // overtime hours worked
 totalWages; // total wages

 regWages = basePay * regHours;
 otWages = otPay * otHours;
 totalWages = regWages + otWages;
 printf(“\n Wages for this week are %0.1f $“, totalWages);
 return 0;
}

Exercise 4.7Exercise 4.7
• Write a program that ask users for information

concerning a book you buy at the shop such as:
ISBN, Title, Price, Quantity. The VAT is 4%.
Program should display these information as the
following interface:

BK Bookseller

Qty ISBN Title Price Total

VAT

You pay:

SolutionSolution
#include <stdio.h>

int main()
{
 double regWages, // calculated regular wages
 basePay = 25000, // base pay rate
 regHours = 40.0, // hours worked less overtime
 otWages, // overtime wages
 otPay = 40000, // overtime pay rate
 otHours = 10, // overtime hours worked
 totalWages; // total wages

 regWages = basePay * regHours;
 otWages = otPay * otHours;
 totalWages = regWages + otWages;
 printf(“\n Wages for this week are %0.1f $“, totalWages);
 return 0;
}

