
C Programming C Programming
Introduction Introduction

Week 3:Week 3:Standard Standard
output introduction output introduction

Topic of this weekTopic of this week
• Output

–Class Lecture Review
•Presentation of results
•printf
•Streams

–puts, putchar (in <stdio.h>)

–Programming Exercises

Input/Output in CInput/Output in C
• C has no built-in statements for input or

output.

• A library of functions is supplied to
perform these operations. The I/O library
functions are listed the “header” file
<stdio.h>.

• You do not need to memorize them, just
be familiar with them.

StreamsStreams

• Streams
–Sequences of characters organized into

lines
• ends with new line character
• ANSI C must support lines of at least 254

characters

–Performs all input and output
–Can often be redirected

• Standard input - keyboard
• Standard output - screen
• Standard error - screen

 Formatting Output with Formatting Output with
printfprintf

• printf
– precise output formatting

• Conversion specifications: flags, field widths, precisions, etc.
– Can perform rounding, aligning columns, right/left justification,

inserting literal characters, exponential format, hexadecimal
format, and fixed width and precision

• Format
printf(format-control-string, other-arguments);
– format control string: includes a listing of the data types of the

variables to be output and, optionally, some text and control
character(s).

– other-arguments: correspond to each conversion specification
in format-control-string

• each specification begins with a percent sign, ends with conversion
specifier

Printing IntegersPrinting Integers

• Integer
– Whole number (no decimal point): 25, 0, -9
– Positive, negative, or zero
– Only minus sign prints by default (later we shall change

this)
Conversion Specifier Description

d Display a signed decimal integer.

i Display a signed decimal integer. (Note: The i and d specifiers are
different when used with scanf.)

o Display an unsigned octal integer.

u Display an unsigned decimal integer.

x or X Display an unsigned hexadecimal integer. X causes the digits 0-9 and
the letters A-F to be displayed and x causes the digits 0-9 and a-f to
be displayed.

h or l (letter l) Place before any integer conversion specifier to indicate that a short
or long integer is displayed respectively. Letters h and l are more
precisely called length modifiers.

1 #include <stdio.h>
2
3 int main()
4 {
5 printf("%d\n", 455);
6 printf("%i\n", 455);/*i same as d*/
7 printf("%d\n", +455);
8 printf("%d\n", -455);
9 printf("%hd\n", 32000);
10 printf("%ld\n", 2000000000);
11 printf("%o\n", 455);
12 printf("%u\n", 455);
13 printf("%u\n", -455);
14 printf("%x\n", 455);
15 printf("%X\n", 455);
16
17 return 0;
18 }

455
455
455
-455
32000
2000000000
707
455
65081
1c7
1C7

Example 1Example 1

Printing Floating-Point Printing Floating-Point
NumbersNumbers

• Floating Point Numbers
– Have a decimal point (33.5)
– Exponential notation (computer's version of

scientific notation)
• 150.3 is 1.503 x 10² in scientific
• 150.3 is 1.503E+02 in exponential (E stands for

exponent)
• use e or E

– f - print floating point with at least one digit
to left of decimal

– g (or G) - prints in f or e(E) with no trailing
zeros (1.2300 becomes 1.23)
• Use exponential if exponent less than -4, or greater

than or equal to precision (6 digits by default)

1 #include <stdio.h>
2
3 int main()
4 {
5 printf("%e\n", 1234567.89);
6 printf("%e\n", +1234567.89);
7 printf("%e\n", -1234567.89);
8 printf("%E\n", 1234567.89);
9 printf("%f\n", 1234567.89);
10 printf("%g\n", 1234567.89);
11 printf("%G\n", 1234567.89);
12
13 return 0;
14 }

1.234568e+006
1.234568e+006
-1.234568e+006
1.234568E+006
1234567.890000
1.23457e+006
1.23457E+006

Example 2Example 2

Printing Strings and Printing Strings and
CharactersCharacters

• c
– Prints char argument
– Cannot be used to print the first character of a

string
• s

– Requires a pointer to char as an argument
– Prints characters until NULL ('\0')

encountered
– Cannot print a char argument

• Remember
– Single quotes for character constants ('z')
– Double quotes for strings "z" (which actually

contains two characters, 'z' and '\0')

1 #include <stdio.h>
2
3 int main()
4 {
5 char character = 'A';
6 char string[] = "This is a string";
7 const char *stringPtr = "This is also a string";
8
9 printf("%c\n", character);
10 printf("%s\n", "This is a string");
11 printf("%s\n", string);
12 printf("%s\n", stringPtr);
13
14 return 0;
15 }

A
This is a string
This is a string
This is also a string

Example 3Example 3

Other Conversion SpecifiersOther Conversion Specifiers
• p

– Displays pointer value (address)
• n

– Stores number of characters already output by
current printf statement

– Takes a pointer to an integer as an argument
– Nothing printed by a %n specification
– Every printf call returns a value

• Number of characters output
• Negative number if error occurs

• %
– Prints a percent sign
– %%

1#include <stdio.h>
2
3int main()
4 {
5 int *ptr;
6 int x = 12345, y;
7
8 ptr = &x;
9 printf("The value of ptr is %p\n", ptr);
10 printf("The address of x is %p\n\n", &x);
11
12 printf("Total characters printed on this line is:
%n",&y);13 printf(" %d\n\n", y);
14
15 y = printf("This line has 28 characters\n");
16 printf("%d characters were printed\n\n", y);
17
18 printf("Printing a %% in a format control string\n");
19
20 return 0;
21}

The value of ptr is 0065FDF0
The address of x is 0065FDF0

Total characters printed on this line is: 41

This line has 28 characters
28 characters were printed

Printing a % in a format control string

Example 4Example 4

Printing with Field Widths and Printing with Field Widths and
PrecisionsPrecisions

• Field width
– Size of field in which data is printed
– If width larger than data, default right

justified
• If field width too small, increases to fit data
• Minus sign uses one character position in

field
– Integer width inserted between % and

conversion specifier
– %4d - field width of 4

Printing with Field Widths and Printing with Field Widths and
Precisions (II)Precisions (II)

• Precision
– Meaning varies depending on data type
– Integers (default 1) - minimum number of

digits to print
• If data too small, prefixed with zeros

– Floating point - number of digits to appear
after decimal (e and f)
• For g - maximum number of significant

digits
– Strings - maximum number of characters

to be written from string

Printing with Field Widths and Printing with Field Widths and
Precisions (III)Precisions (III)

• Format
– Precision: use a dot (.) then precision

number after %
%.3f

– Can be combined with field width
%5.3f

– Can use integer expressions to determine
field width and precision

• Use *
• Negative field width - left justified
• Positive field width - right justified
• Precision must be positive

printf("%*.*f", 7, 2, 98.736);

1 #include <stdio.h>
2
3 int main()
4 {
5 int i = 873;
6 double f = 123.94536;
7 char s[] = "Happy Birthday";
8
9 printf("Using precision for integers\n");
10 printf("\t%.4d\n\t%.9d\n\n", i, i);
11 printf("Using precision for floating-point numbers\n");
12 printf("\t%.3f\n\t%.3e\n\t%.3g\n\n", f, f, f);
13 printf("Using precision for strings\n");
14 printf("\t%.11s\n", s);
15
16 return 0;
17} Using precision for integers

 0873
 000000873

Using precision for floating-point numbers
 123.945
 1.239e+02
 124

Using precision for strings
 Happy Birth

Example 5Example 5

Using Flags in the Using Flags in the printfprintf
Format-Control StringFormat-Control String

• Flags
– Supplement formatting capabilities
– Place flag immediately to the right of percent sign
– Several flags may be combined
Flag Description

- (minus sign) Left-justify the output within the specified field.

+ (plus sign) Display a plus sign preceding positive values and a minus sign preceding
negative values.

space Print a space before a positive value not printed with the + flag.

Prefix 0 to the output value when used with the octal conversion specifier o.

 Prefix 0x or 0X to the output value when used with the hexadecimal conver-
sion specifiers x or X.

 Force a decimal point for a floating-point number printed with e, E, f, g or G
that does not contain a fractional part. (Normally the decimal point is only
printed if a digit follows it.) For g and G specifiers, trailing zeros are not
eliminated.

0 (zero) Pad a field with leading zeros.

1 #include <stdio.h>
2
3 int main()
4 {
5 printf("%10s%10d%10c%10f\n\n", "hello", 7, 'a', 1.23);
6 printf("%-10s%-10d%-10c%-10f\n", "hello", 7, 'a', 1.23);
7 return 0;
8 }

hello 7 a 1.230000

hello 7 a 1.230000

Example 6Example 6

1 #include <stdio.h>
2
3 int main()
4 {
5 int c = 1427;
6 double p = 1427.0;
7
8 printf("%#o\n", c);
9 printf("%#x\n", c);
10 printf("%#X\n", c);
11 printf("\n%g\n", p);
12 printf("%#g\n", p);
13
14 return 0;
15 }

02623
0x593
0X593

1427
1427.00

Example 7Example 7

Printing Literals and Escape Printing Literals and Escape
SequencesSequences

• Printing Literals
–Most characters can be printed
–Certain "problem" characters, such
as the quotation mark "

–Must be represented by escape
sequences
•Represented by a backslash \
followed by an escape character

Printing Literals and Escape Printing Literals and Escape
Sequences (II)Sequences (II)

Escape sequence Description

\' Output the single quote (') character.

\" Output the double quote (") character.

\? Output the question mark (?) character.

\\ Output the backslash (\) character.

\a Cause an audible (bell) or visual alert.

\b Move the cursor back one position on the current line.

\f Move the cursor to the start of the next logical page.

\n Move the cursor to the beginning of the next line.

\r Move the cursor to the beginning of the current line.

\t Move the cursor to the next horizontal tab position.

\v Move the cursor to the next vertical tab position.

ExercisesExercises 3.1 3.1
• Write a program that shows the size

of basic data types, such as: int, long
short, double, char…

• You can use sizeof function to
perform this task.

• e.g: sizeof(int);

SolutionSolution
#include <stdio.h>

main()
{

 printf(" THE SIZE OF BASIC DATA TYPES\n\n");

 printf("int %d\n",sizeof(int));
 printf("short int %d\n",sizeof(short int));
 printf("long int %d\n",sizeof(long int));
 printf("unsigned int %d\n",sizeof(unsigned int));
 printf("unsigned short %d\n",sizeof(unsigned short));
 printf("unsigned long %d\n",sizeof(unsigned long));

}

ExercisesExercises 3.2 3.2
• Write the following program.

Compile, link and run it.
 #include<stdio.h>

 void main ()
 {
 int year;
 float height;

 year = 21;
 height = 1.77;

 printf("Ali is %d years old and %f meter height\n", year, height);
 }

ExercisesExercises 3.3 3.3
• Write a program that asks your name

and then greets you.
• You can use scanf() function to read

data with specified format from
keyboard.

• E.g:
char word[20];
scanf("%19s", word);

SolutionSolution
#include <stdio.h>

int main(void) {
char name[16]; /* string to hold name */

printf("What's your name? ");
scanf("%15s", name);
printf("Hi there, %s!\n", name);
return 0;

}

ExercisesExercises 3.4 3.4
• Now it's time for you to do some programming of

your own. We want you to write a C program that
will read in two integers n and m and print out
the sum of all the values between n and m
inclusive. The program should look like this when
it's working:

 Enter first number: 3
 Enter second number: 5
 Sum 3+5 = 8

SolutionSolution
#include <stdio.h>

int main(void) {
int n, m; /* lower and upper bounds */
int sum; /* accumulated sum */

/*
 * Get the numbers
 */
printf("Enter first number: ");
scanf("%d", &n);
printf("Enter second number: ");
scanf("%d", &m);

SolutionSolution
 /*

 * Compute sum of n and m
 * (also, display inputs for user to check)
 */
sum = n+m;

/*
 * Print results

 */
printf("Sum of %d and %d = %d\n", n, m, sum);

return 0;
}

Exercise 3.5
• The BK library™ DVD shop has three rental rates

Type of rent Rent per disk
Overnight $7.00
Three-day $5.00
Weekly $3.00

• Write a simple C program to input the day of the
week, and the number of overnight, three-day
and weekly DVDs the customer is renting.
Compile this program, and print out the input
values to ensure that they are read correctly.

• Update your program to compute the total cost of
renting the DVDs

Hint
• Note: since the day of the week is

indicated by a single character, you
will need to define a set of
characters, e.g., ‘m’ for Monday, ‘t’
for Tuesday, and ‘h’ for Thursday.

• When reading a single character, use
scanf(“ %c”,&day) to skip leading
blanks.

