

C Programming C Programming
Introduction Introduction

week 12: Arrays week 12: Arrays
and Pointersand Pointers

Pointers and ArraysPointers and Arrays

 Recall that an array S holds the address
of its first element S[0]

 S is actually a pointer to S[0]
int s[10];
int *iptr;
iptr=s; /* From now iptr is equivalent to s */

 Both iptr and s now point to s[0]

Pointer-array equivalencePointer-array equivalence
• Arrays are actually a kind of pointers!
• When an array is defined, a fixed amount

of memory (the size of the array) is
allocated.
– The array variable is set to point to the

beginning of that memory segment

• When a pointer is declared, it is
uninitialized (like a regular variable)

• Unlike pointers, the value of an array
variable cannot be changed

Pointer arithmeticPointer arithmetic
• Pointers can be incremented and

decremented
• If p is a pointer to a particular type,

p+1 yields the correct address of the
next variable of the same type

• p++, p+i, and p += i also make
sense

Pointer arithmeticPointer arithmetic
• If p and q point to elements in an

array, q-p yields the number of
elements between p and q.

• However, there is a difference
between pointer arithmetic and
“regular” arithmetic.

Pointer arithmetic - examplePointer arithmetic - example
int main(void)
{
 int a[3] = {17,289,4913}, *p, *q;

 p = a; /* p points to the beginning of a, that is &a[0] */
 q = p+2; /* q points to a[2]. Equivalent to q = &a[2] */

 printf(“a is %p\n", a);
 printf("p is %p, q is %p\n", p, q);
 printf("p points to %d and q points to %d\n", *p, *q);
 printf("The pointer distance between p and q is %d\n", q-p);
 printf("The integer distance between p and q is %d\n",
 (int)q-(int)p);
 return 0;
} a is 0012FECC

p is 0012FECC, q is 0012FED4
p points to 17 and q points to 4913
The pointer distance between p and q is 2
The integer distance between p and q is 8

Passing arrays to functionPassing arrays to function
• Another way to pass arrays to function is using pointer
• In fact, we pass just the array's address, or more precisely

a pointer to the array.
• The function calculate the sum of all array elements.

#include <stdio.h>
int addNumbers(int *fiveNumber){

int i,sum=0;
for(i=0; i<5; i++, fiveNumbers++){

sum+= *fiveNumbers
}
return sum;

}

Exercise 12.1Exercise 12.1
• Write a function countEven(int*, int)

which receives an integer array and
its size, and returns the number of
even numbers in the array.

SolutionSolution

int counteven(int* arr, int size){
int i;
int count =0;
for (i=0; i<size; i++)

if (*(arr+i)%2==0) count++;
return count;

}

Exercise 12.2Exercise 12.2
• Write a function that returns a

pointer to the maximum value of an
array of double's. If the array is
empty, return NULL.
double* maximum(double* a, int
size);

SolutionSolution

double* maximum(double* a, int size){
double *max;
double *p;
int i;
max=a;
if a==NULL return NULL;
for(p=a+1; p<a+size; p++)

if (*p > *max){
max = p;

}
return max;

}

Exercise 12.3Exercise 12.3
Write a function getSale uses a
pointer to accept the address of an
array. It asks the user to enter the
sales figures and stores those
figures in the array.

Write a function totalSale return the
total of the element int the array.

Use these two functions in a program
to input the sales figure from
different quarteurs and display the
total. Using pointers instead of
array in function's parameters.

SolutionSolution

#include <stdio.h>
void getSales(float *array, int size){

int i;
for(i=0; i<size; i++){
printf("Enter the sale figure for quarter %d:",
i+1);
scanf("%f",array+i);
}

}

float totalSales(float *array, int size) {
double sum;
int i; sum =0;
for(i=0; i<size; i++){
sum +=*array;
array++;
}
return sum;

}

SolutionSolution

int main()

{

float sales[6];

getSales(sales,6);

printf("The total sales for the
year are:
%0.1f\n",totalSales(sales,6));

return 0;

}

Exercise 12.4Exercise 12.4
• Write a program to list all the sub array of

an given array. For example the array 1 3
4 2 has the following sub array:
1
1 3
1 3 4
1 3 4 2
3
3 4
3 4 2
4
4 2
2

SolutionSolution
#include<stdio.h>

void main()
{

int a[100],n;
printf("n = "); scanf("%d",&n);
for(int i=0;i<n;i++)
{
printf("\na[%d] = ",i);scanf("%d",&a[i]);
}
for(i=0;i<n-1;i++)
{
printf("\n%d",a[i]);
for(int j=i;j<n-1;j++)
{
printf("\n");
for(int k=i;k<=j+1;k++)
printf("%d\t",a[k]);
}
}

}

Exercise 12.5Exercise 12.5
• Write a program to reverse an array

in two different ways: using indexes
and using pointers.

Solution: array Solution: array
void reversearray(int arr[], int size){

int i, j, tmp;

i=0; j= size -1;

while(i<j){

tmp=a[i];

a[i]=a[j];

a[j]= tmp;

i++; j--;

}

}

Solution: pointer Solution: pointer
void reversearray(int *arr, int size){

int i, j, tmp;

i=0; j= size -1;

while(i<j){

tmp=*(a+i);

(a+i)=(a+j);

*(a+j)= tmp;

i++; j--;

}

}

