

C Programming C Programming
Introduction Introduction

week 11: Pointersweek 11: Pointers

Memory addressMemory address
• Computer's memory is made up of

bytes. Each byte has a number, an
address, associated with it.

• In the picture below, addresses 924
through 940 are shown.

Memory addressMemory address
 The unary operator & gives the

address of a variable
#include <stdio.h>

int main(){

float fl=3.14;

printf("fl's address=%u\n", (unsigned int) &fl);

return 0;

}

Exercise 12.1Exercise 12.1
• Write a C program to input three

integers. Set up a single pointer to
point to each of these integers in
turn. Display the value dereferencing
the pointer.

SolutionSolution
#include <stdio.h>

int main(){
 int x, y, z;

int* ptr;
printf("Enter three integers: ");
scanf("%d %d %d", &x, &y, &z);
printf("\nThe three integers are:\n");
ptr = &x;
printf("x = %d\n", *ptr);
ptr = &y;
printf("y = %d\n", *ptr);
ptr = &z;
printf("z = %d\n", *ptr);
return 0;

}

Exercise 12.2Exercise 12.2
• Write a program that print out the

address (in hexadecimal format) of
first 5 elements of the array
predefined as below:

int a[7]= {13, -355, 235, 47, 67, 943, 1222} ;

SolutionSolution
#include <stdio.h>

int main(){

int a[7]= {13, -355, 235, 47, 67, 943,
1222};
int i;

printf("address of first five elements in
memory.\n";

for (i=0; i<5;i++)printf("\ta[%d]",i);

printf("\n");

for (i=0; i<5;i++)printf("\t%p",&a[i]);

return 0;

}

Declaring a pointer variableDeclaring a pointer variable

• A pointer is declared by adding a *
before the variable name.

• Pointer is a variable that contains an
address in memory.

• The address should be the address of
a variable or an array that we
defined.

type *variable_name;

PointersPointers

• Here ptr is said to point to the
address of variable c

C

7 3 4… …

173172 174 175 176 177 178 179 180 181

174 3 4… …

P

833832 834 835 836 837 838 839 840 841

ReferencingReferencing
• The unary operator & gives the

address of a variable
• The statement: ptr = &c;
• assigns the address of c to the

pointer variable ptr, and now ptr
points to c

• To print a pointer, use %p format.

ReferencingReferencing
int n;
int *iptr; /* Declare P as a pointer to int */

n = 7;

iptr = &n;
n

7 3 4… …

173172 174 175 176 177 178 179 180 181

174 3 4… …

iptr

833832 834 835 836 837 838 839 840 841

DereferencingDereferencing
• The unary operator * is the

dereferencing operator
• Applied on pointers
• Access the object the pointer points

to
• The statement: *iptr = 5;
 puts in n (the variable pointed to by

iptr) the value 5

Exercise 12.3Exercise 12.3
• Write a program asking the value

from user for 3 float variable a, b, c.
Then add 100 to the content of them
by using just a pointer.

SolutionSolution
#include <stdio.h>
void main(void)
{

int x = 25, y = 50, z = 75;
int *ptr;
printf("Here are the values of x, y, and z:\n");
printf("%d %d %d\n", x, y, z);
ptr = &x; // Store the address of x in ptr
*ptr += 100; // Add 100 to the value in x
ptr = &y; // Store the address of y in ptr
*ptr += 100; // Add 100 to the value in yx
ptr = &z; // Store the address of z in ptr
*ptr += 100; // Add 100 to the value in z
 printf("Once again, here are the values of x, y,
and z:\n");
 printf("%d %d %d\n", x, y, z);

}

Pass arguments by valuePass arguments by value
• The functions we saw until now

received their arguments “by value”
• They could manipulate the passed

values
• They couldn’t change values in the

calling function

Wrong SwapWrong Swap

• A swap that gets integers as variables
does not change the value in the
original variables.

void swap(int x, int y)

{

 int tmp = x;

x = y;

y = tmp;

 }

How can we fix it?How can we fix it?

• We can define swap so it gets pointers
to integers instead of integers

void swap(int *x, int *y)
{

int temp = *x;
*x = *y;
*y = temp;

 }

• We then call swap by swap(&x, &y);
• This is pass by reference

Caller Called

main

Y

X by value

swap

Y

X

by reference

swap

*Y

*X

Exercise 12.4Exercise 12.4
• Write a function that takes three

variable (a, b, c) in as separate
parameters and rotates the values
stored so that value a goes to be, b,
to c and c to a. Test this function in a
program

SolutionSolution
#include <stdio.h>
void swap3(int *p, int *q, int *r){

int tmp;
tmp= *p; *p=*q; *q=*r; *r=tmp;

}
void main(void)
{

int a, b, c;
printf("Enter a, b, c:");
scanf("%d%d%d", &a, &b, &c);
printf("Value before swap. a=%d, b=%d, c=%d\n", a,
b, c);
swap3(&a,&b,&c);
printf("Value after swap. a=%d, b=%d, c=%d\n", a,
b, c);

}

Exercise 12.5Exercise 12.5
Introduce int variables x, y, z and int*
pointer variables p, q, r. Set x, y, z to
three distinct values. Set p, q, r to the
addresses of x, y, z respectively.

1) Print with labels the values of x, y, z, p, q, r,
*p, *q, *r.
2) Swapping values of x, y, z. Print with labels the
values of x, y, z, p, q, r, *p, *q, *r.
3) Swapping values of p, q, r. Print with labels the
values of x, y, z, p, q, r, *p, *q, *r.

Exercises 12.6Exercises 12.6
• To increase salary for an employee,

write a function incomeplus that is
based on the current salary and the
number of years passed from the
beginning years (must > 3) of
current salary.

• Test it in a program.

SolutionSolution
#include <stdio.h>
void incomeplus(long *current, int year){

if (year >3) *current = *current + 300000;
}
void main(void)
{

long cursal; int year;
do {
printf("Enter your current salary:);
scanf("%ld",&cursal);
printf("Number of years passed:");
scanf("%d", &year);
incomeplus(&cursal,year);
printf("Your salary now: %ld", cursal);
}while(year!=-1);

}

