Input/output file

Department of Information System
SolCT, HUST

Standard input/output streams

3 standard streams are opened by a program:
— stdin: for input

— stdout: for output

— stderr: for error

The direction of these streams to peripherals
depends on the program, the default is keyboard for
stdin, screen for stdout and stderr

scanf() and printf() are functions that read/write in
stdin and stdout

perror() prints the errors to stderr

Input.c

Example

#include <stdio.h>
void main ()

{
int a;
if (scanf("%d4d",

perror (“This is not integer\n”);

else

printf (“Input number%d", a);

&a)

=1)

$input -

10 J

Input number10
$input -

abc

This is not integer
$input >out.txt
10 J

Redirect stdout to file
out.txt

Input/output file

Files need to be opened before use.
Associate a "file handler’ to each file
Modes: read, write, or append

File input/output functions use the file
handler (not the filename).

Need to close the file after use.

Basic file handling functions: fopen(),
fclose(), fscanf(), fprintf().

FILE * is the file handler type

Example

#include <stdio.h>

Open file to write

int main ()

{
FILE * out = fopen(“hello.txt”, “w”);

if (out == NULL)
{
perror (“Unable to write to the file.\n”);
return 1;

Write data to file

fprintf (out, “Hello world”) ;
fclose (out) ;

Close file when
terminate

return 0;

Modes in open file

r. read

W: write

a. append

r+: read/write on a new file if not exist
w+: write on a new file if not exist

a+: append on a new file if not exist

fprintf() va printf()

* fprintf works exactly as printf except the
output on stdout.

 printf(...) = fprintf(stdout, ...)

* Similarly we have other output streams:
— fputs(char®, FILE*) and puts(char®)
— fputc(char, FILE™) and putchar(char)

fscanf() and scanf()

* fscanf work exactly as scanf except
the input on stdin.

* The return type of fscanf() and scanf() is
the number of elements read.

* Similarly we have other input streams:
— char* fgets(char*, int maxlen, FILE*) and
— char*gets(char®);
—int fgetc(FILE™) and int getchar(void)

Input data

Both scanf() and fscanf() return:
— the number of input items converted and assigned successfully
— or the constant value EOF when an error or end-of-file occurs

Therefore we can also check EOF using function fscanf

The input process is the process of scanning data on the
buffer according to a specific data type.

After each successful scan, the buffer’s pointer shifts to
the next space in order to scan data for the next reading
time.

When there is no more data in the buffer, the buffer’s
pointer points to EOF.

— To check whether the pointer is at the EOF position or not, using
function int feof(FILE™)

Input formats

Input number following formats %d, %l, %x,..., will skip
spaces and

%s scans a string not including spaces and .

%c scans any character at the pointer’s position
(including spaces and)

Example, if we enter *12 abd”

— "%d%s" gives us a number 12 and a string “ab”

- "%d%c%s" gives us a number 12, a space and a
string “ab”

~ "%d %c%s'" gives us a number 12, a character a
and a string “b”

— "%$s%s" gives us two strings “12" and “ab”

and a character .

"$d%s%c" give us a number 12, a string “ab”

10

fflush ()

Function fflush(<stream>) is used to clean an
iInput/ouput buffer

When a file is closed, its buffer will be
automatically cleaned

fflush() should be used before scanning a
character or a string with gets() or fgets()

Like enter a character, gets() does not skip any
character when scanning. This function scans all
spaces and stops at the first 4. However, - does

not include in the target string.
11

Example

Input.c

#include <stdio.h>

void main ()

{
int a;
char s[20];
printf (“Input a number: ”);
scanf (“%d”, &a);

fflush(stdin) ;
printf (“Input a string: “);
gets(s) ;

printf (“number %d, string %s”,
a, s);

C:\>input

%d only gets two
characters '12’ to convert to
number, the redundant
character . is cleaned by
fflush() before enter a string

by gets()

12

Calculate total words of a file

#include <stdio.h>

int main|()

{
int count = 0;
char s[80];
FILE * £ = fopen(“text.txt”, “r”);
if (£ == NULL)
{

Open file to read

perror (“Failure when opening text file.txt\n”);
return 1;

Read a word
each time

}

while (!'feof(f))
dem += fscanf(f, “%$s”, s);

fclose (£) ;

printf (“Total number of words: %d”, dem);

return O;

13

fgetc() and fputc()

FILE *input, *output;
input = fopen("tmp.c", "r");
output = fopen("tmpCopy.c", "w+")

ch = fgetc(input) ;
while(ch '= EOF) {
fputc(ch, output);
ch = fgetc(input);
}

fclose (input) ;
fclose (output) ;

14

fgets()

#include <stdio.h>
#define LINE LENGTH 80

main ()
{
FILE* fp;
char line[LINE LENGTH] ;
int count=0;
fp=fopen ("input. txt","r");
while (fgets(line, LINE LENGTH, fp) !'= NULL)
count++;
printf ("File contains %d lines.\n", count);

fclose (fp) ;

15

Text file vs. binary file

There is no difference among byte data in binary
file

In text file, byte data are categorized as
displayed character and control character.

A text file is marked as end by a control
character (e.g., 26 in DOS)

To open a file in text mode, we add 't’ in the
open mode ("r+t", "wt", ...).

To open a file in binary mode, we add ‘b’ in the
open mode ("r+b", ...).

16

Input/ouput in binary mode

size t fread(void* buf, size t size,
size t num, FILE* f);

size t fwrite(void* buf, size t size,
size t num, FILE* f);

* Read and write data in the memory with the pointer buf,
with the total elements num, size of each element size

Example:
int a[l1l0];
f=fopen ("integer.dat", "r+b");
fread(a, 10, sizeof(int), £f);

17

Exercises

1. Write a program to create a text file F3 by concatenate two text
files F1 and F2

F1 = “ha noi”’; F2 = “ viet nam” F3 = “ha noi viet nam”
2. Write a program to remove all comments from a C program which

is stored in a file. The name of the file is entered from the
keyboard. Assume that the program does not have syntax errors.

3. Assume that a data file consisting information about weather in a
year has the format for each line as follow: \

<day>/<month> <lowest temperature>-<highest temperature>
<humidity>

1/1 11-17 70

2/112-17 75

4. Write a program read data from this file and print the average
temperature of all months in a year, the most humid month and the

dryest month.
18

