
1

Input/output file

Department of Information System

SoICT, HUST

2

Standard input/output streams

• 3 standard streams are opened by a program:
– stdin: for input
– stdout: for output
– stderr: for error

• The direction of these streams to peripherals
depends on the program, the default is keyboard for
stdin, screen for stdout and stderr

• scanf() and printf() are functions that read/write in
stdin and stdout

• perror() prints the errors to stderr

3

Example

#include <stdio.h>
void main()
{
 int a;
 if (scanf("%d", &a) != 1)
 perror(“This is not integer\n”);
 else
 printf(“Input number%d", a);
}

Input.c

$input
10
Input number10
$input
abc
This is not integer
$input >out.txt
10
$input >out.txt
abc
This is not integer

Redirect stdout to file
out.txt

4

Input/output file

• Files need to be opened before use.
• Associate a "file handler" to each file
• Modes: read, write, or append
• File input/output functions use the file

handler (not the filename).
• Need to close the file after use.
• Basic file handling functions: fopen(),

fclose(), fscanf(), fprintf().
• FILE * is the file handler type

5

Example

#include <stdio.h>

int main()
{
 FILE * out = fopen(“hello.txt”, “w”);

 if (out == NULL)
 {
 perror(“Unable to write to the file.\n”);
 return 1;
 }

 fprintf(out, “Hello world”);
 fclose(out);

 return 0;
}

Open file to write

Close file when
terminate

Write data to file

6

Modes in open file

• r: read

• w: write

• a: append

• r+: read/write on a new file if not exist

• w+: write on a new file if not exist

• a+: append on a new file if not exist

7

fprintf() và printf()

• fprintf works exactly as printf except the
output on stdout.

• printf(…) = fprintf(stdout, …)

• Similarly we have other output streams:
– fputs(char*, FILE*) and puts(char*)

– fputc(char, FILE*) and putchar(char)

8

fscanf() and scanf()

• fscanf work exactly as scanf except
the input on stdin.

• The return type of fscanf() and scanf() is
the number of elements read.

• Similarly we have other input streams:
– char* fgets(char*, int maxlen, FILE*) and
– char*gets(char*);
– int fgetc(FILE*) and int getchar(void)

9

Input data

• Both scanf() and fscanf() return:
– the number of input items converted and assigned successfully
– or the constant value EOF when an error or end-of-file occurs

• Therefore we can also check EOF using function fscanf
• The input process is the process of scanning data on the

buffer according to a specific data type.
• After each successful scan, the buffer’s pointer shifts to

the next space in order to scan data for the next reading
time.

• When there is no more data in the buffer, the buffer’s
pointer points to EOF.
– To check whether the pointer is at the EOF position or not, using

function int feof(FILE*)

10

Input formats
• Input number following formats %d, %l, %x,…, will skip

spaces and
• %s scans a string not including spaces and .
• %c scans any character at the pointer’s position

(including spaces and)
• Example, if we enter “12 ab”

– "%d%s" gives us a number 12 and a string “ab”
– "%d%c%s" gives us a number 12, a space and a

string “ab”
– "%d %c%s" gives us a number 12, a character a

and a string “b”
– "%s%s" gives us two strings “12” and “ab”
– "%d%s%c" give us a number 12, a string “ab”
and a character

11

fflush()

• Function fflush(<stream>) is used to clean an
input/ouput buffer

• When a file is closed, its buffer will be
automatically cleaned

• fflush() should be used before scanning a
character or a string with gets() or fgets()

• Like enter a character, gets() does not skip any
character when scanning. This function scans all
spaces and stops at the first . However, does
not include in the target string.

12

Example

#include <stdio.h>

void main()
{
 int a;
 char s[20];
 printf(“Input a number: ”);
 scanf(“%d”, &a);

 fflush(stdin);
 printf(“Input a string: “);
 gets(s);

 printf(“number %d, string %s”,
a, s);

}

Input.c

C:\>input
Input a number: 12
Input a string: ab
number 12, string ab

%d only gets two
characters ’12’ to convert to

number, the redundant
character is cleaned by

fflush() before enter a string
by gets()

13

Calculate total words of a file
#include <stdio.h>

int main()
{
 int count = 0;
 char s[80];
 FILE * f = fopen(“text.txt”, “r”);
 if (f == NULL)
 {
 perror(“Failure when opening text file.txt\n”);
 return 1;
 }
 while (!feof(f))
 dem += fscanf(f, “%s”, s);
 fclose(f);
 printf(“Total number of words: %d”, dem);
 return 0;
}

Open file to read

Read a word
each time

14

fgetc() and fputc()

FILE *input, *output;
input = fopen("tmp.c", "r");
output = fopen("tmpCopy.c", "w+");

ch = fgetc(input);
while(ch != EOF) {
 fputc(ch, output);
 ch = fgetc(input);
}

fclose(input);
fclose(output);

15

fgets()

#include <stdio.h>
#define LINE_LENGTH 80

main()
{
 FILE* fp;
 char line[LINE_LENGTH];
 int count=0;
 fp=fopen("input.txt","r");
 while (fgets(line, LINE_LENGTH, fp) != NULL)

count++;
 printf("File contains %d lines.\n", count);
 fclose(fp);
}

16

Text file vs. binary file

• There is no difference among byte data in binary
file

• In text file, byte data are categorized as
displayed character and control character.

• A text file is marked as end by a control
character (e.g., 26 in DOS)

• To open a file in text mode, we add ‘t’ in the
open mode ("r+t", "wt", ...).

• To open a file in binary mode, we add ‘b’ in the
open mode ("r+b", ...).

17

Input/ouput in binary mode

size_t fread(void* buf, size_t size,
 size_t num, FILE* f);
size_t fwrite(void* buf, size_t size,
 size_t num, FILE* f);
• Read and write data in the memory with the pointer buf,

with the total elements num, size of each element size

Example:
int a[10];
f=fopen("integer.dat", "r+b");
fread(a, 10, sizeof(int), f);

18

Exercises

1. Write a program to create a text file F3 by concatenate two text
files F1 and F2

F1 = “ha noi”; F2 = “ viet nam” F3 = “ha noi viet nam”
2. Write a program to remove all comments from a C program which

is stored in a file. The name of the file is entered from the
keyboard. Assume that the program does not have syntax errors.

3. Assume that a data file consisting information about weather in a

year has the format for each line as follow: \
<day>/<month> <lowest temperature>-<highest temperature>

<humidity>
1/1 11-17 70
2/1 12-17 75
…
4. Write a program read data from this file and print the average

temperature of all months in a year, the most humid month and the
dryest month.

