
1

Pointer

Department of Information System

SoICT, HUST

2

char ch = ’A’;

’A’0x2000

ch:

Value of chAddress of ch

Memory address of a variable

3

Operator &

•Yields the memory address of an object

&ch Return 0x2000

char ch = ’A’;

’A’0x2000

4

Pointer

ch

0x1FFF 0x2000 0x2001 0x20020x1FFE
etc

‘B’

0x2000

chPtr

0x3A15

A variable can store a
value which is address of
another variable

5

Pointer declaration

• A pointer is a variable which
– Contains a memory address

– Points to a specific data type

cPtr:

char* cPtr;
Example:

0x2004

Can store the address of a
char variable

6

Pointer declaration

int * numPtr;
float * xPtr;

Example:

• can declare a pointer that points to any data
type.

int *numPtr1, *numPtr2;
float *xPtr, *yPtr;

Example:

• A pointer variable is always declared with an
operator *

7

Dereferencing

Example: char c = ’A’;

char *cPtr;

cPtr = &c;
Assign the address of c

to the pointer cPtr

A

c:

0x2000

cPtr:

0x2004

0x2000

•Operator & is used to get the reference address of a pointer

8

Note

•To print the value of a pointer, we use the format %p

printf(“%p”, ptr);Example:

•The dereference variable of a pointer must have the
corresponding type with the pointer.

int aNumber;
char *ptr;

ptr = &aNumber;

Example:
Data type error

9

NULL pointer

int *numPtr;
Be careful with the pointer

not initialized

???

numPtr

int *numPtr = NULL;

• A pointer should be initialized before using. If there is not a variable to
point to, initialize it with NULL (a special value = 0).

NULL

numPtr

A pointer with the NULL
dereference (no address)

10

* operator

• We can use pointers to access variables
they point to by the * operator.

• * is also known as “dereferencing operator”.
• Should not be confused with the * in the pointer

declaration.
• Be careful with the pointer not initialized

Example: char c = ’A’;

char *cPtr = NULL;

cPtr = &c;

*cPtr = ’B’; Change value of c pointed by
cPtr

11

Steps in using a pointer
• Step 1: Declare a variable pointed by a pointer

int num;
char ch = ‘A’;
float x;

num:

‘A’ch:

x:

12

Steps in using a pointer
• Step 2: Declare the pointer

int* numPtr = NULL;
char *chPtr = NULL;
float * xPtr = NULL;

int num;
char ch = ‘A’;
float x;

numPtr:

chPtr:

xPtr:

num:

‘A’ch:

x:

NULL

NULL

NULL

13

Steps in using a pointer
• Step 3: Referencing the pointer

int* numPtr = NULL;
char *chPtr = NULL;
float * xPtr = NULL;

int num;
char ch = ‘A’;
float x;

numPtr = #

numPtr: &num

&chchPtr:

&xxPtr:

num:

‘A’ch:

x:

chPtr = &ch;
xPtr = &x;

14

Steps in using a pointer
• Step 4: Dereferencing the pointer

int* numPtr = NULL;
char *chPtr = NULL;
float * xPtr = NULL;

int num;
char ch = ‘A’;
float x;

numPtr = #
chPtr = &ch;
xPtr = &x;

*xPtr = 0.25;
*numPtr = *chPtr;

num: 65

‘A’ch:

0.25x:

numPtr: &num

&chchPtr:

&xxPtr:

15

Common errors

• Cannot referencing a pointer to a constant or an
equation.

• Cannot change the address of a variable in the
memory (since it cannot determine by users!)

• Errors:
– ptr = &3;

– ptr = &(x+5);

– &x = ptr;

– &x = 0x2000;

16

Example
int main()
{ int x = 25, y = 50; // Two int variables
 int *ptr; // Pointer variable
 // Display the contents of x and y.

printf(“%d %d”, x,y);
 // Use the pointer to manipulate x and y.
 // Store the address of x in ptr.

 ptr = &x;
 // Add 100 to the value in x.

 x +=100; // *ptr = *ptr +100;
 // Store the address of y in ptr.

 ptr = &y;
 // Add 100 to the value in y.

 y +=100; //*ptr = *ptr + 100;
 // Display the contents of x and y.

printf(“%d %d”, x,y);
 return 0;
}

17

Function parameters and pointers

• Pointers can be passed as parameters of a function.
• Example: Create a function that swap values of two input parameter.

x: 1

y: 2
swap

x: 2

y: 1

18

#include <stdio.h>

void swap1(int a, int b)
{
 int tmp;

 tmp = a;
 a = b;
 b = tmp;
 return;
}

int main()
{
 int x = 1, y = 2;

 swap1(x, y);
 printf(“%d %d\n”, x, y);
 return 0;
}

1

2

x:

y:

1

2

a:

b:

tmp:

Passing parameters by values

19

#include <stdio.h>

void swap1(int a, int b)
{
 int tmp;

 tmp = a;
 a = b;
 b = tmp;
 return;
}

int main()
{
 int x = 1, y = 2;

 swap1(x, y);
 printf(“%d %d\n”, x, y);
 return 0;
}

1

2

x:

y:

2

1

a:

b:

1tmp:

Passing parameters by values

20

#include <stdio.h>

void swap2(int* a, int* b)
{
 int tmp;

 tmp = *a;
 *a = *b;
 *b = tmp;
 return;
}

int main()
{
 int x = 1, y = 2;

 swap2(&x, &y);
 printf(“%d %d\n”, x, y);
 return 0;
}

1

2

x:

y:

&x

&y

a:

b:

tmp:

Passing by reference

21

#include <stdio.h>

void swap2(int* a, int* b)
{
 int tmp;

 tmp = *a;
 *a = *b;
 *b = tmp;
 return;
}

int main()
{
 int x = 1, y = 2;

 swap2(&x, &y);
 printf(“%d %d\n”, x, y);
 return 0;
}

2

1

x:

y:

&x

&y

a:

b:

1tmp:

Passing by reference

22

Pointers as function’s parameters

• Allow to change the value of actual variables.

• Passing by reference in the scanf function

char ch;

int numx;

float numy;

scanf(“%c %d %f”, &ch, &numx, &numy);

23

Advantages

• Passing by references is more effective than passing
by values since it does not create a copy of the input
values for the function each time it is called.

• Can use parameters as references for creating a
function that returns more than one value.

void maxmin(int a, int b,
 int *max, int *min)
{
 *max = (a>b) ? a : b;
 *min = (a<b) ? a : b;
}

24

Disadvantages

• It is difficult to control a program using
functions with pointer parameters since a
variable can be changed anywhere in the
program.

• Only use functions with pointer
parameters when necessary

25

Array and pointer
 In an array declaration, the array’s name initiates the

address where the array is allocated.
 An array corresponds to the address of its first element.

 ptr[i] and A[i] have the same meaning because ptr and A
point to the same address.

 Cannot change the address of an array but can change
the address of a pointer

int A[10];
int *ptr;
ptr = A; /* ptr = &A[0] */

Example:

int B[10];
ptr = B; /* OK */
A = B; /* Not OK */

Example:

26

Array and pointer

• Integer math operations can be used with pointers.
• If you increase a pointer, it will be increased by the size of

whatever it points to.
• p++ and p += 1 have the same meaning

int a[5];

a[0] a[1] a[2] a[3] a[4]

int *ptr = a;

*ptr

*(ptr+2)
*(ptr+4)

28

Exercise

• Write a program that includes the following
functions:
– Input values for an array

– Increase all values of the array by 2
– Print out the new array

• You should use pointers to access the
array. The array is passed as function
parameter

Exercise

Are each of the following definitions valid or invalid? If any are
invalid, why?

a. int ivar;

int *iptr = &ivar;

b. int ivar, *iptr = &ivar;

c. float fvar;

int *iptr = &fvar;

d. int nums[50], *iptr = nums;

e. int *iptr = &ivar;

int ivar;

29

1. Declare an array of type unsigned int called values with
five elements, and initialize the elements to the even
integers from 2 to 10. Assume that the symbolic
constant SIZE has been defined as 5.

2. Declare a pointer vPtr that points to an object of type
unsigned int.

3. Use a for statement to print the elements of array
values using array subscript notation.

4. Use a for statement to print the elements of array
values using pointer/offset notation.

5. Use a for statement to print the elements of array
values by subscripting the pointer to the array.

30

Exercise

6. Refer to the fifth element of values using array subscript
notation, pointer/offset notation with the array name as
the pointer, pointer subscript notation and pointer/offset
notation.

Assume that unsigned integers are stored in two bytes and
that the starting address of the array is at location
1002500 in memory.

6. What address is referenced by vPtr + 3? What value is
stored at that location?

7. Assuming that vPtr points to values[4], what address is
referenced by vPtr -= 4? What value is stored at that
location?

31

Exercise

