Function and structured
programming

Department of Information System
SolCT, HUST

Function

Is a block of declarations and
statements which is assigned a name

A function is a sub-program

A program is a function with the name
main and can call to sub-programs

These sub-programs can use other
functions

Example

#include <stdio.h>

// Function prints a greeting

 Function definition - { e e
{

printf (“Hello World!\n”);
}

// Calling the greeting function

int main (void)
{
| sayHello() ;
_return 0; |
}

Function call

Why using functions?

* Functions allow divide a problem into smaller
problems
— Allow solving the difficult problem easier

* Aprogram is clearer when using functions
— We only need to know what a function does
without caring how it is done
* They allow generalize some groups of
statements that repeat many times

— Prevent repeatedly writing a group of statements
many time

Building function

* Writing a function needs to specify:
—the name of the function
— its parameters
— what it returns

— block of statements to be carried out when the
function is called

* The block of statements is called the
“function body”

Factorial function

#include <stdio.h>

int [factorial | (int a)
{
int i, fac=1l;
Function’s body for (i=1; i<=a; i++)
fact = fac * i;
return fac;

int main(void) {

int num;

printf (“Input an integer:");
scanf ("%d", &num) ;

printf ("%d!=%d\n",
num, factorial (num)) ;

Function parameters

Parameters are information passed to a function

“Formal” parameters are local variables declared inside the
function declaration.

“‘Actual” parameters are values passed to the function
when it is called

Parameters are local variables of the function. Their values
are defined each time the function is called.
— Parameters have different values at each time the function is called
— Parameters can only be accessed inside the function

— When calling the function, values for all parameters must be
defined

Note:

— Parameters are passed by copying the value of the actual
parameters to the formal parameters.

— Changes to formal parameters do not affect the value of the actual
parameters.

Example of parameter

#include <stdio.h>
Declare a parameter

- » - ‘// 1
int addOne (int i as a local variable

3
{

i=1i+1;
return i;

Change the value of
the local variable

}

int main (void)

{

Passing the value of i in
function main for the

int i = 3; fuction

printf (“%d\n”, addOne (i));
printf (“%d\n”, i);

Output:

4
3

return 0;

}

Example

void badSwap (int a, int b)
{ int temp;
temp = a;
a =b;
b = temp;
printf ("Called environment: %d %d\n",a,b);

int main(void)

{ int a = 3, b =5;
printf ("Calling environment: %d %d\n",a,b);
badSwap (a, b);
printf ("Calling environment: %d %d\n",a,b);
return O;

Return value

* return statement is used to return a
value for a function

* A function can have several return
statements. The first return that the
program meets will terminate the
function.

* A function that returns nothing must be
declared with the return type void

— In this case, no return Is needed

10

Declare and define a function

* A definition of the function that describes all
members of the function including main body
of the function

* Afunction declaration only has to declare:
— Function’s name
— Argument’s type
— Return type

* Create a function declaration by using
prototype. Example:
int addOne (int) ;
void sayHello (void) ;

11

Role of prototype

* Afunction can be defined after being used,
however it has to declare before being used.

* |t allows to call a function without knowing its
definition.

— Example, the prototype of the function printf() is
declared in the file stdio.h

12

Factorial function

#include <stdio.h>

int factorial (int);

int main(void) {
int num;

printf ("Enter an integer number:") ;
scanf ("%d", &num) ;

printf ("%d!=%d\n",
num, factorial (num)) ;

int factorial (int a) {
int 1, gt=1;
for(i=1l,; i<=a; i++)
gt =gt * i;
return gt;

-

13

Global variable

* Variables declared in a function body (local
variables) are only accessible while the
function is executing.

* Global variables are variables declared
outside the functions. They accessible in
any function after their declaration to the
end of that source file.

* Example:
int global,
void f(void) { global =0;}
void f(void) { global = 1;}

14

Variables with the same name

* When the global variable and the local variable
has the same name, the local variable has a
higher priority than the global one.

* Example
int i; /global variable
void f() {
int i; //local variable
I++; // only change value of the local variable i

}

void g() {
I++; // change value of the global variable |

}

15

Function library

* C provides some functions such as input, output,
mathematic, memory management, string
processing, etc.

* To use these functions, their prototypes are
needed to be declared in the program.

* Such prototypes are written in header files (.h).
We only need to #include them in the program

16

math.h

Include a set of mathematic functions with the
prototypes:

double sin(double x);
double cos (double x);
double tan (double x);

double log(double x);

double sqrt(double x);

double pow(double x, double vy);
int ceil (double x) ;

int floor (double x);

17

Exercise

* Given two function prototypes:
int nhapso();
int max(int a, int b);

* Write function definitions and the main
program using the above functions for

finding the maximum values for 3 numbers
entered from keyboard.

18

