Expressions

Department of Information System
SolCT, HUST

EXxpressions

* Combine values using operators and
function calls

* Return a value of a known type (int,
double, float, pointer)

* Example:
* (3+4)/2 returns an integer value (3).
* + and / are operators, 3, 4, 2 are operands.

EXxpressions

* An operator is something which takes one
or more values and does something useful
with those values to produce a result

* Each thing which is operated upon by an
operator is called an operand

* Operation is the action which was carried
out upon the operands by the operator

Arithmetic Expressions

* take arithmetic (numerical) values
* return an arithmetic (numerical) value

* Are composed using the following operators:
* + (unary plus)
* - (unary minus)
* + (addition)
* - (subtraction)
* * (multiplication)
* / (division or quotient)
* % (modulus or remainder)

Example

1 +2*3-4/05
=1+ (2 *3) - (4 / 5)

Co2%

) ¢

/
—~

Example (con’t)

1 +2*3-4/5=

1+ (2*3) - (4/5)
—

Divide two integers,
the result is also an
integer

Example (con't)

1 +2*3-4/65 =

1+(2*3)—(4/5)

Example (con't)

* Use a real number to create an expression
that return a real value

1 +2 * 3 -4.0/5
=1+ (2 * 3) - (4.0 / 5)
1 + 6 - 0.8

6.2

Comparison operators

< (less than)

<= (less than or equal)

> (greater than)

>= (greater than or equal)
== (equal)

I= (in-equal)

Example

1+2<3
=(1+2)<3
=3<3=0

* Not to be confused between == and =
(assignment)

10

Prevent
misconsiderin
g as assign
operator (=)

Example

7 T3 =45 0
3 1=4 -5 1
3<4-51

3 <4 ¢&5 >2 -1

11

Logic

* A special data type that has only two
values:

* ltis used to create the selection of
conditions or the loop for an algorithm

* Boolean expression: is an expression that
return only true/false

12

Use int as logic

* In C, logic values are represented by
integer

— any non-zero value is taken interpreted as
true (often use 1)

* All expressions in C return a number

* A"true” logic expression will return 1,
otherwise 0

13

Logic operators

... IS used to built logic expression

&& (and)

| (or)
| (not)
comparison (==,

, <, >, <=, >=)

14

Example

(3==3)&& (1+2) < 3
=1 && (3 < 3)
=188 0=0

15

Prevent
misconsidering
as and bit (&)

Example

Prevent

misconsidering
as reverse bit

g/

0

Prevent

misconsidering

5 &%orbit(l)

1

4 > 1

0O -1

0 && 2 —> 1

16

Bit operators

An expression that only uses bit operators is not
logic expression. Result of this expression is an
integer.

& (and bit)

| (or bit)

~ (negation)
>> (shift right)
<< (shift left)

17

Bit operators

* Not to be confused with boolean operators: &&,
I !

* Example:
5 =101
& 4 =100

18

Common errors

#include <stdio.h>

/* Common errors */

int main ()

{

Return value is

int score; always 1

if (score == || 10)
{ ,
printf (“E

}

Return value is 0
return 0;

or 1

20

Common errors (con’t)

#include <stdio.h>

/* Correct program */

int main ()

{

int score;

scanf ("%d", &score) ; f
if (score == 9 || score == 10)
{

printf (“Excellent\n") ;

}

return 0O;

21

Common errors (con’t)

#include <stdio.h>

/* Common errors */

int main ()

{

int score;

Return value is
always 1

scanf ("%d", &scexzE) ;

if (g <= score <= 10)

{
printf (“Goos

}

Return value is 0
return O;

or 1

22

Common errors (con’t)

#include <stdio.h>

/* Correct program */
int main ()

{

int score;

scanf ("%d", &score) ;

v

if (8 <= score && score <= 10)
{

printf (“Good\n") ;
}

return 0O;

Assignment expressions

Assignment = Is also an operator that returns the
assignment value.

This operator can be used to create an expression that

return a value: result of the assignment is the right value
of the expression

Example:
(x=4)—>4
(y=0)—>0
a=b=5=2a=(b=5=>a=>5
Can create an expression with a series of assignment
X=y=z=4

24

Common errors (con’t)

#include <stdio.h>

/* Common errors */

int main ()

{

int score;

Incorrect wrote
as an
assignment

scanf ("%d", &score) ;

if (score = 9 || score = 10)
{

printf (“Good'\n") ;
}

return 0;

Common errors (con’t)

#include <stdio.h>

/* Probably the most common C error. */

int main ()

{

int score;

scanf ("%d", &score) ;

if (score == 9 || score == 10) “

{

printf (“OK!'\n") ;
}

return 0O;

26

Some extend assignment operators

Operator Example Equal expression
+= X+=95 X=X+5
-= X-=95 X=X-9
= X=D5 X=X*H5
/= X/[=5 X=X/9
%= |X%=5 X=X%DH5

27

Increment, decrement operators

* ++ |s the increment operator

* ++|is equivalenttoi=1+ 1

* --Is the decrement operator

* —-jisequivalenttoj=j-1

* Two ways of writing: prefix (++i) and suffix (i++)
* They are different in return values of
expressions. Example, if i =5

— Prefix return value after adding 1, (++i) > 6

— Posfix return value before adding 1, (i++) —> 5
— In both cases, value of i increases by 1

28

Int1 = 5;
++;

printf(“%d”, 1);

* Output: 6

Example

29

Conditional Expressions

* ... aternary operator
Condition ? Expr2 : Expr3

* Example:
int max,a,b;

max = (a >b) ? a : b;

30

Casting data type

* Assignment is only carried out in variables and
values in the same data type

* C can automatically convert data type for
assignment if this conversion do not loose
information. Example, convert from int to float
int a;
float £;

f =a; /* OK */
a=f; /* not OK */

* In case of loosing information, casting data type
Is needed. Example, convert from float to int.

a = (int) £;

31

Precedences

— Unary operators (!, -)

— Multiply, divide (*, /, %)

— Addition, subtraction (+, =)

— Comparison 1 (<, <=, >, >=)
— Comparison 2 (==, I=)

— And (&&)

= Or (|[)

32

Example

* 7+5&&4<2+3-2/3||5>2+1

* (7+5)&&4<2+3-(2/3)||5>(2+1)
¢ 12&&4<(2+3-0)||(5>3)

* 12&&(4<5)||1

* (12&&1)||1

* 1|1 =1

33

Exercise

o 38&8&7+4/3-2>6+-3*10%2
. 2+3/5>6-10/2||3/78&84

. (3<<1)&(4>>2)|5

* (1>4)&&(2][(3<4))

(!! ')

(5, 1, %)
(+! ')

(<, <=, >
>=)

(==, |=)
And (&&)
Or (1)

34

