
1

Expressions

Department of Information System

SoICT, HUST

2

Expressions

• Combine values using operators and
function calls

• Return a value of a known type (int,
double, float, pointer)

• Example:
• (3+4)/2 returns an integer value (3).

• + and / are operators, 3, 4, 2 are operands.

3

Expressions

• An operator is something which takes one
or more values and does something useful
with those values to produce a result

• Each thing which is operated upon by an
operator is called an operand

• Operation is the action which was carried
out upon the operands by the operator

4

Arithmetic Expressions
• take arithmetic (numerical) values

• return an arithmetic (numerical) value

• Are composed using the following operators:
• + (unary plus)

• - (unary minus)

• + (addition)

• - (subtraction)

• * (multiplication)

• / (division or quotient)

• % (modulus or remainder)

5

Example

6.2

1 + 2 * 3 - 4 / 5

= 1 + (2 * 3) - (4 / 5)

6

Example (con’t)

Divide two integers,
the result is also an
integer

1 + 2 * 3 - 4 / 5 =

1 + (2 * 3) - (4 / 5)

7

Example (con’t)

= 0

1 + 2 * 3 - 4 / 5 =

1 + (2 * 3) - (4 / 5)
7

8

Example (con’t)

• Use a real number to create an expression
that return a real value

1 + 2 * 3 - 4.0 / 5

= 1 + (2 * 3) - (4.0 / 5)

= 1 + 6 - 0.8

= 6.2

9

Comparison operators

• < (less than)

• <= (less than or equal)

• > (greater than)

• >= (greater than or equal)

• == (equal)

• != (in-equal)

10

Example

1 + 2 < 3

= (1 + 2) < 3

= 3 < 3 = 0

• Not to be confused between == and =
(assignment)

11

Example

3 == 4  0

3 != 4  1

3 < 4  1

3 < 4 && 5 > 2  1

Prevent
misconsiderin
g as assign
operator (=)

12

Logic

• A special data type that has only two
values:
– true

– false

• It is used to create the selection of
conditions or the loop for an algorithm

• Boolean expression: is an expression that
return only true/false

13

Use int as logic

• In C, logic values are represented by
integer
– 0 is false

– any non-zero value is taken interpreted as
true (often use 1)

• All expressions in C return a number

• A “true” logic expression will return 1,
otherwise 0

14

Logic operators

• … is used to built logic expression

• && (and)

• || (or)

• ! (not)

• comparison (==, !=, <, >, <=, >=)

15

Example

(3 ==3) && (1+ 2) < 3

= 1 && (3 < 3)

= 1 && 0 = 0

16

Example

5 && 4  1

1 || 4  1

! 0  1

! 0 || 0 && 2  1

Prevent
misconsidering
as and bit (&)

Prevent
misconsidering

as or bit (|)Prevent
misconsidering
as reverse bit

(~)

17

Bit operators

An expression that only uses bit operators is not
logic expression. Result of this expression is an
integer.

& (and bit)
| (or bit)
~ (negation)
>> (shift right)
<< (shift left)

18

Bit operators

• Not to be confused with boolean operators: &&,
||, !

• Example:
 5 = 101
& 4 = 100

= 4 = 100

1 | 4  ?
5 & (4 >> 1)  ?

20

#include <stdio.h>

/* Common errors */

int main()
{
 int score;

 scanf("%d", &score);

 if (score == 9 || 10)
 {
 printf(“Excellent\n");
 }
 return 0;
}

Common errors

Return value is 0
or 1

Return value is
always 1

21

#include <stdio.h>

/* Correct program */

int main()
{
 int score;

 scanf("%d", &score);

 if (score == 9 || score == 10)
 {
 printf(“Excellent\n");
 }
 return 0;
}

Common errors (con’t)

22

#include <stdio.h>

/* Common errors */

int main()
{
 int score;

 scanf("%d", &score);

 if (8 <= score <= 10)
 {
 printf(“Good\n");
 }
 return 0;
}

Common errors (con’t)

Return value is 0
or 1

Return value is
always 1

23

#include <stdio.h>

/* Correct program */

int main()
{
 int score;

 scanf("%d", &score);

 if (8 <= score && score <= 10)
 {
 printf(“Good\n");
 }
 return 0;
}

Common errors (con’t)

24

Assignment expressions

• Assignment = is also an operator that returns the
assignment value.

• This operator can be used to create an expression that
return a value: result of the assignment is the right value
of the expression

• Example:
(x = 4)  4
(y = 0)  0
a = b = 5  a = (b = 5)  a = 5

• Can create an expression with a series of assignment
x = y = z = 4

25

#include <stdio.h>

/* Common errors */

int main()
{
 int score;

 scanf("%d", &score);

 if (score = 9 || score = 10)
 {
 printf(“Good!\n");
 }
 return 0;
}

Common errors (con’t)

Incorrect wrote
as an

assignment

26

#include <stdio.h>

/* Probably the most common C error. */

int main()
{
 int score;

 scanf("%d", &score);

 if (score == 9 || score == 10)
 {
 printf(“OK!\n");
 }
 return 0;
}

Common errors (con’t)

27

Some extend assignment operators

Operator Example Equal expression

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x % 5

28

Increment, decrement operators

• ++ is the increment operator
• ++i is equivalent to i = i + 1
• -- is the decrement operator
• --j is equivalent to j = j - 1
• Two ways of writing: prefix (++i) and suffix (i++)
• They are different in return values of

expressions. Example, if i = 5
– Prefix return value after adding 1, (++i)  6
– Posfix return value before adding 1, (i++)  5
– In both cases, value of i increases by 1

29

Example

int i = 5;

++i;

printf(“%d”, i);

• Output: 6

30

Conditional Expressions

• … a ternary operator
Condition ? Expr2 : Expr3

• Example:

int max,a,b;

…

max = (a > b) ? a : b;

31

Casting data type

• Assignment is only carried out in variables and
values in the same data type

• C can automatically convert data type for
assignment if this conversion do not loose
information. Example, convert from int to float
int a;
float f;
f = a; /* OK */
a = f; /* not OK */

• In case of loosing information, casting data type
is needed. Example, convert from float to int.
a = (int) f;

32

Precedences

– Unary operators (!, -)

– Multiply, divide (*, /, %)

– Addition, subtraction (+, -)

– Comparison 1 (<, <=, >, >=)

– Comparison 2 (==, !=)

– And (&&)
– Or (||)

33

Example

• 7+5&&4<2+3-2/3||5>2+1

• (7+5)&&4<2+3-(2/3)||5>(2+1)

• 12&&4<(2+3-0)||(5>3)

• 12&&(4<5)||1

• (12&&1)||1

• 1||1 = 1

34

Exercise

• 3&&7+4/3-2>6+-3*10%2

• 2+3/5>6-10/2||3/7&&4

• (3<<1)&(4>>2)|5

• (1>4)&&(2||(3<4))

(!, -)
(*, /, %)
(+, -)
(<, <=, >,
>=)
(==, !=)
And (&&)
Or (||)

