
CHƯƠNG 8: FAULT
TOLERANCE

TS. Trần Hải Anh

Trần Hải Anh – Distributed System 1

Content

1.  Introduction to fault tolerance
2.  Process resilience
3.  Reliable client-Server Communication
4.  Reliable Group Communication
5.  Distributed Commit
6.  Recovery

Trần Hải Anh – Distributed System

2

1.1. Basic concept
1.2. Failure models
1.3. Failure masking by redundancy

1. Introduction to fault tolerance 3

Trần Hải Anh – Distributed System

1.1. Basic concept

Trần Hải Anh – Distributed System

4

¨  Being fault tolerant related to Dependable systems which
cover:
¤  Availability
¤  Reliability
¤  Safety
¤  Maintainability

•  Fail/Fault
•  Fault Tolerance
•  Transient Faults
•  Intermittent Faults
•  Permanent Faults

1.2. Failure models

Trần Hải Anh – Distributed System

5

¨  Different types of failures
 Type	of	failure	 Descrip0on	

Crash	failure	 A	server	halts,	but	is	working	correctly	un8l	it	halts	

Omission	failure	 Aserver	fails	to	respond	to	incoming	requests	

				Receive	omission	 A	server	falls	to	receive	incoming	messages	

				Send	omission	 A	server	falls	to	send	messages	

Timing	failure	 A	server's	response	lies	outside	the	specified	8me	interval	

Response	failure	 A	server's	response	is	incorrect	

				Value	failure	 The	value	of	the	response	is	wrong	

				State	transi8on	failure	 The	server	deviates	from	the	correct	flow	of	control	

Arbitrary	failure	 A	server	may	produce	arbitrary	responses	at	arbitrary	8mes	

Fail-stop	failure	 A	server	stops	producing	output	and	its	hal8ng	can	be	detected	by	other	systems	

Fail-silent	failure	 Another	process	may	incorrectly	conclude	that	a	server	has	halted	

Fail-safe	 A	server	produces	random	output	which	is	recognized	by	other	processes	as	plain	junk	

1.3. Failure masking by redundancy
6

¨  Three possible kinds for masking failure
¤  Information redundancy
¤  Time redundancy
¤  Physical redundancy

¨  Triple Modular Redundancy (TMR)

2. Process resilience

Trần Hải Anh – Distributed System

7

2.1. Design issues
2.2. Failure masking and replication
2.3. Agreement in faulty system
2.4. Failure detection

2.1. Design issues (1/3)

Trần Hải Anh – Distributed System

8

¨  Process group
¤  Key approach: organize several identical processes into a

group
¤  Key property: message is sent to the group itself and all

members receive it
¤  Dynamic: create, destroy, join or leave

2.1. Design issues (2/3)
9

•  Flat Groups versus Hierarchical Groups

¤  Comparison

 Advantages	 Disadvantages	

Flat	Groups	

Symmetrical	

Complicated	decision	making	
No	single	point	of	failure	
Group	s8ll	con8nues	while	one	of	the	processes	
crashes	

Hierarchical	Groups	 Easy	decision	making	 Loss	 of	 coordinator	 brings	 the	
group	to	halt	

2.1. Group membership(3/3)
10

•  Group Server

•  Distributed way
Approach - each member communicates directly to all others
Disadvantages
-  Fail-stop semantics are not appropriate
-  Leaving and joining must be synchronous with data messages being sent
•  Membership issues
What happens when multiple machines crash at the same time?

Approach
-  Send request
-  Maintain databases of all groups
-  Maintain their memberships
Disadvantages
-  A single point of failure

2.2. Failure masking and Replication
11

•  Primary-based protocols
-  Used in form of primary-backup protocol
-  Organize group of processes in hierarchy
-  Backups execute election algorithm to choose a new

primary

•  Replicated-write protocols
-  Used in form of active replication or quorum-based

protocols
-  Organize a collection of identical processes into a flat

group
-  Called ‘k fault tolerant’ if system can survive faults in k

components.

2.3. Agreement in Faulty systems (1/3)

Trần Hải Anh – Distributed System

12

•  Different cases
1.  Synchronous versus asynchronous system
2.  Communication delay is bounded or not
3.  Message delivery is ordered or not
4.  Message transmission is done through unicasting or

multicasting
•  Circumstances under which distributed agreement can be

reached

2.3. Agreement in Faulty systems (2/3)
13

•  Byzantine agreement
Assuming N processes, each process i provides a value vi
Goal: construct a vector V of length N

If i is nonfaulty then V[i] = vi

•  Example: N = 4 and k = 1

2.3. Agreement in Faulty systems (3/3)

Trần Hải Anh – Distributed System

14

•  Lamport et al. (1982) proved that agreement can be achieved if
-  2k+1 correctly process for total of 3k + 1, with k faulty

processes
(or more than 2/3 correctly process with 2k+1 nonfaulty processes)

•  Fisher et al. (1985) proved that where messages is not delivered
within a known and finite time -> No possible agreement if even
only one process is faulty because arbitrarily slow processes are
indistinguishable from crashed ones

2.4. Failure Detection

Trần Hải Anh – Distributed System

15

•  Two mechanisms - Active process and Passive Process
•  Timeout mechanism is used to check whether a process has

failed. Main disadvantages:
-  Possible wrong detection when simply stating failure due to unreliable

networks. Thus, generate false positives and a perfectly healthy process
could be removed from the membership list

-  Failure detection is plain crude, based only on the lack of a reply to a
single message

•  How to design a failure detection subsystem?
-  Through gossiping
-  Through probe
-  Regular information exchange with neighbors -> a member for which the

availability information is old, will presumably have failed
•  Failure detection subsystem ability?

-  Distinguish network failures from node failures by letting nodes decide
whether one of its neighbors has crashed

-  Inform nonfaulty processes about the failure detection using FUSE
approach

3.1. Point-to-Point Communication
3.2. RPC Semantics in the Presence of Failures

3. Reliable Client-Server
Communication

16

Trần Hải Anh – Distributed System

3.1. Point-to-Point Communication

Trần Hải Anh – Distributed System

17

•  Point-to-point communication is established by using reliable
transport protocols
-  TCP masks omission failures by using acknowledgments and

retransmissions -> failure is hidden from TCP client

-  Crash failures cannot be masked because TCP connection is

broken
 -> client is informed through exception raised
 -> Let the distributed system automatically set up a

new connection

3.2. RPC Semantics in the Presence of
Failures (1/5)

Trần Hải Anh – Distributed System

18

•  RPC (Remote Procedure Calls) hides communication by
remote procedure calls

•  Failures occur when:
-  Client is unable to locate the server
-  Request message from the client to the server is lost
-  Server crashes after receiving a request
-  Reply message from the server to the client is lost
-  Client crashes after sending a request

3.2. RPC Semantics in the Presence of
Failures (2/5)

Trần Hải Anh – Distributed System

19

•  Client is unable to locate the server, e.g. the client cannot locate a
suitable server, or all servers are down…
-> Solution: raise Exception
Drawbacks:
-  not every language has exceptions or signals.
-  Exception destroys the transparency

•  Lost request Messages, detected by setting a timer
-  Timer expires before a reply or ack -> resend message
-  True loss -> no difference between retransmission and original
-  So many messages lost -> client gives up and concludes that the

server is down, which is back to “Cannot locate server”
-  No message lost: let the server to detect and deal with

retransmission

3.2. RPC Semantics in the Presence of
Failures (3/5)

20

•  Server Crashes

 (a) Normal Case (b) Crash after execution (c) Crash before execution

Difficult to distinguish between (b) and (c)
-  (b) the system has to report failure back to the client
-  (c) need to retransmit the request
3 philosophies for servers:
¤  At least once semantics
¤  At most once semantics
¤  Exactly once semantics
4 strategies for the client
-  Client decide to never reissue a request
-  Client decide to always reissue a request
-  Client decide to reissue a request only when no acknowledgment received
-  Client decide to reissue a request only when receiving acknowledgment

3.2. RPC Semantics in the Presence of
Failures (4/5)

Trần Hải Anh – Distributed System

21

•  Server Crashes (next)
8 considerable combinations but none is satisfactory
-  3 events: M (send message), P (print text), C (crash)
-  6 orderings All possible

combinations

1.  M -> P -> C
2.  M -> C (-> P)
3.  P -> M -> C
4.  P -> C –(> M)
5.  C (-> P -> M)
6.  C (-> M -> P)

Conclusion
-  The possibility of server crashes changes the nature of RPC and distinguishes

single-processor systems from distributed systems
-  In former case, a server crash also implies a client crash

3.2. RPC Semantics in the Presence of
Failures (5/5)

Trần Hải Anh – Distributed System

22

•  Lost Reply Messages
-  Solution: rely on a timer set by client’s operating system
Difficulty -> The client is not really sure why there was no answer: lost or slow?
-  Idempotent request: asking for the first 1024 bytes of a file has no side effects

and executing as often as necessary without any harm
-  Assign sequence number: server keeps track of the most recently received

sequence number from each client and refuse to carry out any request a second
time

•  Client crashes
-  Solution: activate computation called “orphan”
Difficulty:

-  Waste CPU cycles
-  Lock files or tie up valuable resources
-  Confusion if the client reboots and does RPC again

-  Alternative solutions:
-  Orphan extermination
-  Reincarnation
-  Gentle Reincarnation
-  Expiration

4.1. Basic Reliable – Multicasting Schemes
4.2. Scalability in Reliable Multicasting
4.3. Atomic Multicast

4. Reliable Group Communication 23

Trần Hải Anh – Distributed System

4.1. Basic Reliable – Multicasting
Schemes

Trần Hải Anh – Distributed System

24

•  Multicasting means that a message sent to a process group,
should be delivered to each member of that group

•  In presence of faulty process: multicasting is reliable when all
nonfaulty group members receive the message

•  Solution to reliable multicasting when all receivers are known
and assumed not to fail

(a)  Message
Transmission

(b) Reporting
feedback

4.2. Scalability in Reliable Multicasting
(1/2)
25

•  Problem of reliable multicast scheme it that cannot support
large numbers of receivers

•  Nonhierarchical feedback control
-  Key: reduce the number of feedback messages returned
-  Model: feedback suppression which underlies the scalable

reliable multicasting (SRM)
-  In SRM, receiver reports when missing message and multicasts

its feedback to the rest of the group. Other group members will
suppress its own feedback.

4.2. Scalability in Reliable Multicasting
(2/2)

26

•  Hierarchical feedback control
-  Achieving scalability for very large groups of receivers requires

adopting hierarchical approaches
-  Each local coordinator forwards the message to its children and

later handles retransmission requests

-  Main problem: construction of the dynamic is not easy

4.3. Atomic Multicast (1/6)

Trần Hải Anh – Distributed System

27

•  Atomic multicast:
-  Guarantee that a message is delivered to either all processes or

to non at all.
-  All messages are delivered in the same order to all processes
-  In non-atomic multicast, when there are multiple updates and a

replica crashes, it is difficult to locate operations missing and the
order these operations are to be performed

-  In atomic multicast, when replica crashes, it ensures that
nonfaulty processes maintain a consistent view of the database
and force reconciliation when a replica recovers and rejoins the
group

4.3. Atomic Multicast (2/6)

Trần Hải Anh – Distributed System

28

•  Virtual Synchrony
To distinguish between receiving and delivering message, adopt distributed
system model which consists of communication layer

-  Multicast message m is associated with a list of processes to which it should be
delivered, named group view

-  Each process on that list has the same view.
-  Message m, group view G. While the multicast is taking place, another process

joins or leaves the group -> View change – multicast a message vc announcing the
joining or leaving of a process -> two multicast messages in transit: m and vc

4.3. Atomic Multicast (4/6)

Trần Hải Anh – Distributed System

29

•  Message Ordering
-  Unordered multicasts

Sample of three communicating processes in the same group -> the ordering of events per process is shown along the
vertical axis

-  FIFO-ordered multicasts

Sample of four processes in the same group with two different senders, and a possible delivery order of messages under

FIFO-ordered multicasting

-  Causally-ordered multicasts
-  Totally-ordered multicasts

Process	P1	 Process	P2	 Process	P3	
sends	m1	 receives	m1	 receives	m2	
sends	m2	 receives	m2	 receives	m1	

Process	P1	 Process	P2	 Process	P3	 Process	P3	
sends	m1	 receives	m1	 receives	m3	 receives	m3	
sends	m2	 receives	m3	 receives	m1	 receives	m4	

receives	m2	 receives	m2	
receives	m4	 receives	m4	

4.3. Atomic Multicast (5/6)

Trần Hải Anh – Distributed System

30

•  Implementing Virtual Synchrony
¤ 	Goal:	Guarantee	that	all	messages	sent	to	view	G	are	delivered	
to	all	nonfaulty	processes	in	G	before	the	view	change.	
¤ Solu8on:	Let	every	process	in	G	keep	m	un8l	it	knows	for	sure	
that	all	members	in	G	have	received	it.	
¤ Stable	message	

4.3. Atomic Multicast (6/6)

Trần Hải Anh – Distributed System

31

•  Implementing Virtual Synchrony
-  Illustra8on	of	selec8ng	stable	message	

a)  Process	4	no8ces	that	process	7	has	crashed	and	sends	a	view	change		
b)  Process	6	sends	out	all	its	unstable	messages	and	subsequently	marks	it	

as	being	stable,	followed	by	a	flush	message	
c)  Process	6	installs	the	new	view	when	it	has	received	a	flush	message	

from	everyone	else	
	
	

5.1. Two-Phase Commit
5.2. Three-Phase Commit

5. Distributed Commit 32

Trần Hải Anh – Distributed System

About Distributed Commit

Trần Hải Anh – Distributed System

33

•  Distributed commit involves having an operation being
performed by each member of a process group, or non at all
-  Reliable multicasting: Operation = message delivery
-  Distributed transactions: Operation = transaction commit at the

single site that takes part in the transaction
•  Distributed commit is established by means of coordinator
•  One-phase commit protocol: a simple scheme where a coordinator

tells all other processes (called participants) whether or not to
perform the operation in question.

•  Sophisticated schemes: Two-phase commit or Three-phase commit

5.1. Two-Phase Commit - 2PC (1/5)

Trần Hải Anh – Distributed System

34

•  Protocol consists two phase:
ü  Coordinator sends a VOTE_REQUEST message to all participants
ü  After receiving, participant returns VOTE_COMMIT or VOTE_ABORT

message to the coordinator

ü  Coordinator collects all votes and send GLOBAL_COMMIT message or

GLOBAL_ABORT message to participants
ü  Each participant that voted for a commit waits for the final reaction to

commit or not the transaction

Phase
1

Phase
2

Coordinator Participant

5.1. Two-Phase Commit - 2PC (2/5)

Trần Hải Anh – Distributed System

35

•  Participant Solution:
-  use timeout mechanism or let a participant P contact
-  Let a participant P contact another participant Q and

decide what it should do. If P is in READY status,
here are various options

State	of	Q	 Ac0on	by	P	
			COMMIT	 			Make	transi8on	to	COMMIT	
			ABORT	 			Make	transi8on	to	ABORT	
			INIT	 			Make	transi8on	to	ABORT	
			READY	 			Contact	another	par8cipant	

5.1. Two-Phase Commit - 2PC (3/5)

Trần Hải Anh – Distributed System

36

 - Sample of actions taken in place by the participant:

5.1. Two-Phase Commit - 2PC (4/5)

Trần Hải Anh – Distributed System

37

-  Each participant should be prepared to accept requests for a
global decision from other participants

5.1. Two-Phase Commit - 2PC (5/5)
38

•  Coordinator solution
-  Keep track of current state
-  Sample of actions taken in place by the coordinator:

5.2. Three-Phase Commit (1/2)

Trần Hải Anh – Distributed System

39

•  Two-phase problem: when the coordinator has crashed, participants may not
be able make final decision

•  Three-phase commit protocol (3PC) avoids blocking processes in when fail-
stop crashes.

•  Principle:
-  There is no single state from which it is possible to make a transition

directly to either a COMMIT or an ABORT state
-  There is no state in which it is not possible to make a final decision, and

from which a transition to a COMMIT state can be made
•  Illustration

5.2. Three-Phase Commit (2/2)
40

•  Actions taken by Participant in different cases

•  Actions taken by Coordinator in different cases

•  Main difference with 2PC: if any participant is in READY state, no crashed process
will recover to a state other than INT, ABORT or PRECOMMIT

State	of	Par0cipant	P	 State	of	Par0cipant	Q	 State	of	all	other	par0cipants	 Ac0on	

INT	 		 		 VOTE_ABORT	
READY	 INT	 		 VOTE_ABORT	
READY	 READY	 READY	 VOTE_ABORT	
READY	 PRECOMMIT	 PRECOMMIT	 VOTE_COMMIT	
PRECOMMIT	 READY	 READY	 VOTE_ABORT	
PRECOMMIT	 PRECOMMIT	 PRECOMMIT	 VOTE_COMMIT	
PRECOMMIT	 COMMIT	 COMMIT	 VOTE_COMMIT	

State	of	Coordinator	 Ac0on	
WAIT	 GLOBAL_ABORT	
PRECOMMIT	 GLOBAL_COMMIT	

6. Recovery

Trần Hải Anh – Distributed System

41

6.1. Introduction
6.2. Checkpointing

6.1. Introduction (1/2)	

Trần Hải Anh – Distributed System

42

•  Backward	recovery:	bring	the	system	into	a	previously	correct	state.	
-  Necessary	to	record	the	system’s	state,	called	checkpoint	
-  Generally	applied	for	recovering	from	failures	in	distributed	

systems	
-  E.g.	Reliable	communica8on	through	packet	retransmission	
-  Drawback:		

Ø  reduce	performance	
Ø  no	guarantees	that	recovery	has	taken	place	
Ø  some	states	can	never	be	rolled	back	to.	
Ø  checkpoint	could	penalize	performance	and	is	cosly	

-  Solu8on	for	checkpoint:	combine	with	message	logging	or	use	
receiver-based	logging	

•  Forward	recovery:	bring	the	system	in	a	correct	new	state	from	
which	it	can	con8nue	to	execute	
-  E.g.	Erasure	correc8on-	a	missing	packet	is	constructed	 	from	

other;	successfully	delivered	packets	

6.1. Introduction (2/2)	

Trần Hải Anh – Distributed System

43

•  Stable	Storage	
-  Informa8on	needed	to	enable	recovery	is	safely	stored	in	case	

of	process	crashes,	site	failures	or	various	storage	media	
failures	

-  Three	categories	of	storage:	RAM	memory,	disk	storage	and	
stable	storage	

-  Sample	of	stable	storage	implemen8ng	with	a	pair	of	ordinary	
disk	

(a)  Stable	storage	
(b)  Crash	acer	drive		

	 	1	is	updated	
(c)	Bad	spot	

6.2. Checkpointing (1/3)

Trần Hải Anh – Distributed System

44

•  Distributed	snapshot:	record	a	consistent	global	state.	
-  If	a	process	P	records	the	receipt	of	a	message,	then	there	

should	also	be	a	process	Q	that	has	recorded	the	sending	of	
that	message.		

•  Recovery	line:	recover	to	the	most	recent	distributed	snapshot	

	
		

6.2. Checkpointing (2/3)
45

•  Independent	Checkpoin0ng	
-  Domino	effect:	process	to	find	a	recovery	line	via	cascaded	

rollback	

-  Independent	checkpoin0ng:	processes	take	local	checkpoints	
independent	of	each	other.		

-  Disadvantages:	Introduc8on	of	performance	problem,	need	of	
periodical	cleaning	for	local	storage,	difficult	problem	in	
compu8ng	the	recovery	line	

6.3. Message Logging (1/3)

Trần Hải Anh – Distributed System

46

•  Idea:	if	the	transmission	of	messages	can	be	replayed,	we	can	
s8ll	reach	a	globally	consistent	state	but	without	having	to	
restore	that	state	from	stable	storage	

•  Solu0on:	take	a	checkpointed	state	as	a	star8ng	point,	all	
messages	sent	will	be	retransmiged	and	handled	accordingly	

•  Assump0on:	piecewise	determinis-c	model,	the	execu8on	of	
each	process	is	assumed	to	take	place	as	a	series	of	intervals	in	
which	events	take	place	

•  Alvisi	&	Marzullo:	many	exis8ng	message-logging	schemes	can	
be	easily	characterized	if	we	concentrate	on	how	they	deal	with	
orphan	processes	

•  Orphan	process	is	a	process	that	survives	the	crash	of	another	
process,	but	whose	state	is	inconsistent	with	the	crashed	
process	acer	its	recovery	

6.3. Message Logging (2/3)

Trần Hải Anh – Distributed System

47
•  Characterizing	Message	–	Logging	Schemes	

-  Each	message	m	is	considered	to	have	a	header	
containing	all	informa0on	to	retransmit	m	and	to	handle	
it	

-  A	stable	message	is	used	for	recovery	by	replying	their	
transmission	

-  Each	message	m	leads	to	a	set	DEP(m)	of	processes	that	
depend	on	the	delivery	of	m	

-  If	another	message	m’	is	dependent	on	the	delivery	of	m,	
and	m’	has	been	delivered	to	a	process	Q,	then	Q	will	also	
be	contained	in	DEP(m)	

-  The	set	COPY(m)	consists	of	those	processes	that	have	a	
copy	of	m,	but	not	in	their	local	stable	storage.	When	Q	
delivers	m,	it	becomes	a	member	of	COPY(m)	

6.3. Message Logging (3/3)

Trần Hải Anh – Distributed System

48
•  Characterizing	Message	–	Logging	Schemes	(next)	

-  Suppose	that	Q	is	one	of	the	surviving	processes	acer	a	
crash	in	COPY(m)	->	Q	is	an	orphan	process	which	is	
dependent	on	m,	but	cannot	replay	m’s	transmission	

-  To	avoid	orphan	processes	->	ensure	that	if	each	process	
in	COPY(m)	crashed,	no	surviving	process	is	lec	in	DEP(m)	

-  Pessimis0c	logging	protocols	ensure	that	each	nonstable	
message	m	is	delivered	to	at	most	one	process.	

-  Op0mis0c	logging	protocol:	any	orphan	process	in	DEP(m)	
is	rolled	back	to	a	state	in	which	it	no	longer	belongs	to	
DEP(m)	

		
	

6.4. Recovery-Oriented Computing

Trần Hải Anh – Distributed System

49
•  Approach:	start	over	again	
•  Solu0on	1:	reboot	part	of	a	system		

-  Delete	all	instances	of	the	iden8fied	components	with	
threads	and	restart	the	associated	requests.	

-  Solu8on	requires	that	components	are	largely	decoupled	
and	no	dependencies	between	components.	

	
•  Solu0on	2:	apply	checkpoin0ng	and	recovery	techniques	

-  Give	more	buffer	space	to	programs,	clear	memory	before	
allocated,	changing	the	ordering	of	message	delivery	

-  Tackle	socware	failures		

Trần Hải Anh – Distributed System

50

