
CHAPTER 7: 
CONSISTENCY AND 

REPLICATION 
Dr. Trần Hải Anh 



Problems 
2 



Content Delivery Network 
3 

•  Improve the performance of the system 
•  Reduce network load 
•  Provide better fault tolerance 



AKAMAI 



Outline 
5 

1.  Introduction 
2.  Data-centric consistency models 
3.  Client-centric consistency models 
4.  Replica management 
5.  Consistency protocols 



1. Introduction 6 



1.1. Why do we need replication 
7 

¨  Reliability 
¨  Performance 
¨  Scalability (?) 

¨  Consistency 



1.2. Consistency   
8 

¨  Consistency of replicated data 
¤  Impossible to propagate the updates immediately 
¤ When? How? 

¨  Strong consistency and Weak consistency 
¨  Trade-off between consistency and performance 



2. Data-centric consistency models 9 



2.1. Distributed data store 
10 

Distributed data store

Process Process Process

Local copy



Consistency model 
11 

¨  A contract between processes and the data store. 
¨  If processes agree to obey certain rules, the store 

promises to work correctly. 
¨  Range of consistency models 
¨  Major restrictions à easy 
¨  Minor restrictions à difficult 



12 

Consistency 
models 

Data-centric 
consistency 

Continuous 
consistency 

Consistency 
ordering of 
operations 

sequential 
consistency 

causal 
consistency 

Client-centric 
consistency 

Monotonic reads 

Monotonic 
writes 

Read your writes 

Writes follow 
reads 



2.2. Continuous consistency 
13 

¨  Factors for defining inconsistencies: 
¤ Deviation in numerical values 
¤ Deviation in staleness (the last time a replica was 

updated) 
¤ Deviation of ordering of update operations 

¨  When the deviation exceeds a given value, 
Middleware will perform replication operations to 
bring the deviation back to the limit. 



2.3. Conit (consistency unit) 
14 

<  5, B> x := x + 2 [ x = 2 ]

[ y = 2 ]

[ y = 3 ]

[ x = 6 ]

<  8, A>

<12, A>

<14, A>

y := y + 2

y := y + 1

x := y * 2

Operation Result
 

x = 6; y = 3
Conit

Replica A

Vector clock A = (15, 5) 
Order deviation  = 3 
Numerical deviation  = (1, 5)

<  5, B> x := x + 2 [ x = 2 ]

[ y = 5 ]<10, B> y := y + 5

Operation Result
 

x = 2; y = 5
Conit

Replica B

Vector clock B = (0, 11) 
Order deviation  = 2 
Numerical deviation  = (3, 6)

Time:? 
Oder:? 
Value:? 
 



Size of conit 
15 

¨  A conit represents a lot of data à bring replica 
sooner in an inconsistent state 
¨  Conit very small à overhead related to managing 
the conit 



16 

Consistency 
models 

Data-centric 
consistency 

Continuous 
consistency 

Consistency 
ordering of 
operations 

sequential 
consistency 

causal 
consistency 

Client-centric 
consistency 

Monotonic reads 

Monotonic 
writes 

Read your writes 

Writes follow 
reads 



2.4. Consistent Ordering of Operations 
17 

¨  Concurrent programming 
¨  Parallel and distributed computing 
¨  Express the semantics of concurrent accesses when 

shared resources are replicated 
¨  Deal with consistently ordering operations on 

shared, replicated data.  



Special notation 
18 

¨  Operations on data item x 
¤ Reading: (Ri(x)b) 
¤ Writing: (Wi(x)a) 
¤  Initial value of data item is NIL 



19 

Consistency 
models 

Data-centric 
consistency 

Continuous 
consistency 

Consistency 
ordering of 
operations 

sequential 
consistency 

causal 
consistency 

Client-centric 
consistency 

Monotonic reads 

Monotonic 
writes 

Read your writes 

Writes follow 
reads 



Sequential consistency 
20 

¨  When processes run concurrently on different 
machines, any valid interleaving of read and write 
operations is acceptable behavior 

¨  All processes see the same interleaving of 
operations 

¨  The result of any execution is the same as if the 
operations by all processes on the data store were 
executed in some sequential order and the 
operations of each individual process appear in 
this sequence in the order specified by its program. 



Example 
21 



22 

Consistency 
models 

Data-centric 
consistency 

Continuous 
consistency 

Consistency 
ordering of 
operations 

sequential 
consistency 

causal 
consistency 

Client-centric 
consistency 

Monotonic reads 

Monotonic 
writes 

Read your writes 

Writes follow 
reads 



Causal consistency 
23 

¨  A distinction between events that are potentially 
causally related and those are not. 

¨  Writes that are potentially causally related must be 
seen by all processes in the same order. Concurrent 
writes may be seen in a different order on different 
machines. 



Causal consistency (cont.) 
24 



Grouping operations 
25 

¨  Sequential and causal consistency are defined at the 
level of read and write operations à appropriate 
for the hardware level (shared memory 
multiprocessor systems) à did not match the 
granularity as provided by applications. 

¨  At application level: read and write operations are 
bracketed by the pair: ENTER_CS and LEAVE_CS 



3 conditions 
26 

¨  A process does an acquire only after all the guarded 
shared data have been brought up to date. 

¨  Before updating a shared data item, a process must 
enter a critical section. 

¨  If a process wants to enter a critical region, it must 
check with the owner of the synchronization 
variable guarding to fetch the most recent copies 



Example 
27 



3.1. Eventual consistency 
3.2. Monotonic reads 
3.3. Monotonic writes 
3.4. Read your writes 
3.5. Writes follow reads 

3. Client-centric consistency 28 



3.1. Eventual Consistency 
29 

¨  Consider two services: DNS, WWW 
¨  Very little number of writes (updates), huge number 

of reads 
¨  No write-write conflict, only the read-write 

conflicts. 
¨  These systems tolerate a relatively high degree of 

inconsistency 
¨  If no updates take place for a long time, all replicas 

will gradually become consistent. 



Problem of Eventual Consistency 
30 



Client-centric consistency 
31 

¨  Provide guarantees for a single client concerning 
the consistency of accesses to a data store by that 
client.  

¨  No guarantees for concurrent accesses by different 
clients. 

¨  4 types: 
¤ Monotonic reads 
¤ Monotonic writes 
¤ Read your writes 
¤ Writes follow reads 



Notations 
32 

¨  Li: ith local copy  
¨  xi[t]: data item x at Li, time t 
¨  WS(xi[t]): writes operation at Li that took place 

since initialization 
¨  WS(xi[t1]; xj[t2]): All operations WS(xi[t1]) have 

been delivered to Lj, before t2 



3.2. Monotonic reads 
33 



3.3. Monotonic writes 
34 



3.4. Read your writes 
35 



3.5. Writes follow reads 
36 



4.1. Replica server placement 
4.2. Content replication and placement 
4.3. Content distribution 

4. Replica management 37 



4.1. Replica server placement 
38 

¨  Problem 
¤  N locations for replica placement 
¤  Determine K out of N locations 

¨  Solution 1 
n  Distance between clients and locations 
n  Select one server at a time 

¨  Solution 2: Ignoring the position of clients 
¤  Take the topology of the Internet  
¤  Sort the ASes  

n  Place the server on the router with the largest number of Network 
interfaces 

¤  Continue with the sorted list 



4.2. Content replication and placement 
39 



Permanent replicas 
40 

¤ The initial set of replicas 
¤ The number of replica is small 
¤ First kind of distribution 

n Data is replicated across a limited number of servers 
n For each request, it is forwarded to one of the servers (eg. 

using Round-robin strategy). 
¤ 2nd kind of distribution: mirroring 

n Client simply chooses one of the various mirror sites. 
¤ Shared-nothing architecture 



Server-initiated Replicas 
41 

¤ Server is active 
n The number of requests increased suddenly 
n Activate other replicas 

¤ Reduce load for replicas  
¤ Update the data to a new replica closer to the client 



Server-initiated Replicas 

Server without
copy of file F

Client Server with
copy of F

P
Q

C1

C2

Server Q counts access from C  and
C   as if they would come from P

1
2

File F



Client-initiated Replicas 
43 

¨  Caching 
¤ Client manages the cache management, decides to 

update the cache 
¤ Erase 
¤ Write 
¤ Policy caching 

¨  Can share caches between clients 



4.3. Content Distribution 
44 

¨  State vs. Operations 
¨  Pull vs. Push 
¨  Unicast vs. Multicast 



State vs. Operations 
45 

¨  Solutions for updating data: 
¤ Propagate only a notification of an update 

n Use little network bandwidth.  
n Read-to-write ratio is small 

¤ Transferring the modified data  
n Read-to-write ratio is high 

¤ Send update operation (active replication) 



Pull/Push 
46 

¨  Push: server after updating notification data for all 
clients 
¤  Replica activated by server 
¤  Ensure high consistency 
¤  Weak interaction (eg when client or replica needs to update 

data) 
¤  The server should have a list of all connected clients 

¨  Pull: client when need data will ask server 
¤  Usually used for client caches 
¤  Suitable for high writes-reads ratio  
¤  Increased access time (with cache miss) 

¨  Mixed 



Uni vs. multicast 
47 

¨  Multicasting: 
¤ Appropriate in case 1 replica wants to promote updates 

to (N-1) other copies in a data store 
¤ More efficient and economical than sending (N-1) 

times 
¤ Appropriate for the push-based approach 
¤ Not suitable if destination nodes belong to a LAN 

¨  Unicasting: 
¤ Appropriate for pull-based 



5.1. Continuous consistency  
5.2. Primary-based protocols 
5.3. Replicated write 
5.4. Cache coherence  

5. Consistency protocols 48 



5.1. Continuous consistency 
49 

¨  Bounding numerical deviation 
¨  Bounding staleness deviation 
¨  Bounding ordering deviation 



Bounding numerical deviation 
50 

¨  Single data item x.  
¨  Each write W(x) has an associated weight that represents 

the numerical value by which x is updated 
¨  The write’s origin:  origin(W(x)) 
¨  each server Si keeps log Li of writes that are performed on 

its own local copy of x.  
¨  TW[i,j] is the writes executed by Si that originated from Sj 

¤  TW[k,k] : aggregated writes submitted to Sk 
 



Bounding numerical deviation 
51 

¨  Actual value of x 

¤ The threshold:  



Bounding Staleness Deviation 
52 

¨  Can use local time of processes to evaluate 
¤ Server Sk has vector clock RVCk 

¤  if RVCk[i]=T(i)  => Sk has seen all operations on Si at 
T(i) 

¤ T(i) : local time of server I 
¤ When T(k)-RVCk[i]> delta => eliminate operations 

having T>RVCk[i] 



Bounding ordering deviation 
53 

¨  Each replica has a write queue 
¨  Global order should be considered 
¨  The largest number of write operations are in the 

queue 
¨  When this number exceeds, the server will stop the 

execution and will negotiate with other servers in 
order 



5.2. Primary-based protocols 
54 

¨  Consistency model => complex 
¨  Developers need simpler models 
¨  Each data item has a primary that is responsible for 

manipulating operations on that data items 
¨  Fixed-primary (remote-write protocol) 
¨  Local-primary (local write protocol) 



Remote-write protocol 
55 



Local-write protocol 
56 



5.3. Replicated-write protocols 
57 

1.  Active replication 
2.  Quorum-based protocol 



5.3.1. Active replication 
58 

¨  A process is responsible for propagating the update 
operation to all replicas 

¨  Need a total ordered mechanism 
¤  logiccal synchronization of Lamport  
¤ Sequencer 



5.3.2. Quorum-based protocol 
59 

¨  For strong consistency => need to update all replicas 
¨  After updating at a costly cost => not all replicas are read 

=> wasted 
¨  Is there a reduction in the number of replicas that need 

updating? 
¨  When reading the data 

¤  Risk of reading the old data 
¤  Read more data in some other replicas => Select the copy with 

the latest data 
¨  Write Quorum & Read Quorum 

¤  NR + NW > N 
¤  NW > N/2 



Example of quorum 
60 

A A

A

B B

B

C C

C

D D

D

E E

E

F F

F

G G

G

H H

H

I I

I

J J

J

K K

K

L L

L

Read quorum

Write quorum
NR WN= 3, = 10 NR WN= 7, = 6

NR WN= 1, = 12

(a) (b)

(c)


