DAIHOC

BACH KHOA

CHAPTER 6:
SYNCHRONIZATION

-

- DR. TRAN HAI ANH

Contents

Clock synchronization
Logical clock
Mutual exclusion

Election algorithm

Synchronization

How process synchronize

Multiple process to not simultaneously access to the
same resources: printers, files

Multiple process are agreed on the ordering of event.
Ex: message m1 of P is sent after m2 of Q

Synchronization based on actual time
Synchronization by relative ordering

1. Clock Synchronization

Notion of synchronization
Physical Clocks

Global Positioning System

Clock Synchronization Algorithms
Use of Synchronized Clocks

Why do we need it?
Example 1: Programming in DS

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢\ % % % to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor ; ® ; | to local clock

runs
output.c created

7 When each machine has its own clock, an event that
occurred after another event may nevertheless be

assigned an earlier time.

Example 2: Global Positioning
System (1)

Height

Point to be
ignored

(14,14)

(-6,6)
A \L// — X>

=10

Computing a position in a two-dimensional space

Global Positioning System (2)

Real world facts that complicate GPS

It takes a while before data on a
satellite’ s position reaches the receiver.

The receiver s clock is generally not in
synch with that of a satellite.

Physycal Clocks

Timer

Counter & Holding
register

Clock tick

Problem in distributed
systems:
How do we synchronize RTCIC
them with real-world? (Real Time Clock)

How do we synchronize
the clocks with each
other?

Bl 1=
R |
'R
'k
(R !
+ R
' R
R |
1R
t R

Physical Clocks (1)

Earth's orbit

A transit of the sun
occurs when the
sun reaches the
highest point of

the day

At the transit of the sun

n days later, the earth

has rotated fewer
than 360°

Earth on day O at the
transit of the sun

To distant galaxy

To distant galaxy

Earth on day n at the
transit of the sun

Computation of the mean solar day

Physical Clocks (2)

0 1 2 3 45 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23 24 2
TAl "t 1+ttt

| | | | |
| [| | [| I

seconds f i i i i f f % i

12 1314 15 16 17 18 19 2122 23 24 25
| | | | | | | | | |

| ! 1 l
I\I I I | I I/Il | | | |

Leap seconds introduced into UTC to
get it in synch with TAI

TAI seconds are of constant length, unlike solar seconds. Lea

p
seconds are introduced when necessary to keep in phase with the
sun

=> UTC (Universal Cordinated Time)

Clock Synchronization Algorithms

1 Network Time Protocol
- Berkeley Algorithm

= Clock Synchronization in Wireless Networks

Network Time Protocol

B
A
dTreq dTres
T,-T T4-T Th=T1)+ (T3 -T4)
9=T3+(2 1);(4 3)—T4=(2 12 53— T4

Getting the current time from a time server

The Berkeley Algorithm (1)

Time daemon
3:00 / 3:00

o [(D
| | 3:00
-1 The time daemon N
asks all the other | |
machines for their
clock values. @ @

The Berkeley Algorithm (2)
300 |

10 €5
n The machines
answer. @ @

2:50 320
(b)

The Berkeley Algorithm (3)

3:05

f +5
+15 @
- The time daemon tells j r
everyone how to
adjust their clock. @ @

Clock Synchronization in Wireless
Networks (1)

Message preparation

\ Time spent in NIC
/ Delivery time

to app. —

= The usual critical path
in determining B

network delays. \

Critical path
(a)

Clock Synchronization in Wireless
Networks (2)

Message preparation

Time spent in NIC
0 The critical \ / Delivery time
path in the case * to app. —
of RBS.
B
< >
Z) Critical path
k — Lg.k
Offset [p,q] = B~ 1T (b)

2. Logical clock

- Lamport logical clocks
= Vector clocks

2.1. Lamport s Logical Clocks (1)

The "happens-before" relation — can be
observed directly 1n two situations:

If a and b are events in the same process, and a occurs
before b, then a — b 1s true.

If a 1s the event of a message being sent by one
process, and b 1s the event of the message being
received by another process, then a — b

Transitive relation: ¢ —» band b — ¢, then a — ¢

Concurrent

Lamport s Logical Clocks (2)

- Three processes, each with its own clock.
The clocks run at different rates.

P, P, Py
0 0 0
51 m F b
:?:?:\‘j:?: 20
18 541 m, |30
£l B 4o
30 40 50
36 48 60
12 561< s |70
48 04 80
sal< . |72 90
60 80 100

Lamport s Logical Clocks (3)

Updating counter C,; for process P,

Before executing an event P; executes
C,«—C,+1.

When process P, sends a message m to P, it sets m s
timestamp ts (m) equal to C, after having executed the
previous step.

Upon the receipt of a message m, process P;adjusts its
own local counter as
C; < max{C,, ts (m)}, after which it then executes the

J
first step and delivers the message to the application.

Lamport s Logical Clocks (4)

Application layer

Adjust local clock
and timestamp message

Middleware sends message

Adjust local clock

Middleware layer

Network layer

Message is received

Lamport s Logical Clocks (5)

(b) Lamport s algorithm corrects the clocks.

3 P, P,
0 0 0
(6 my |8 10
:i?:\‘:@ 20
18 541 m, |30
54 G| do
30 | P2 adjusts | 40 190
36 its clock 48 60
....... R o
12 G ™ |70
48 69 80
Zor ™ |77 EY
76 | Py adjusts L85 100

its clock

Example: Totally Ordered Multicasting

% Ypdater i i

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

Updating a replicated database and leaving it in an
Inconsistent state.

2.2. Vector Clocks (1)

Concurrent message transmission using logical

clocks. P, P, P,
0 0 0
61 m, |8 10
3] i8] M |30
18 EaEl
54 321 msy |40
30 40| >[50
36 48 60
....... f"\/"-""
4 61X . |70
48 69 80
7o s |77 90
76 85 100

Vector Clocks (2)

Vector clocks are constructed by letting each process
P. maintain a vector VC, with the following two
properties:

VC. [i] 1s the number of events that have occurred so
far at P.. In other words, VC, [i] 1s the local logical
clock at process P, .

If VC, [j] = k then P, knows that k events have

occurred at P;. It 1s thus P." s knowledge of the local
time at P; .

Vector Clocks (3)

Steps carried out to accomplish property 2 of previous
shide:

Before executing an event P; executes
VC,[i] < VC, [i]+1.
When process P, sends a message m to P, it sets m s

(vector) timestamp ts (m) equal to VC, after having
executed the previous step.

Upon the receipt ot a message m, process P; adjusts its
own vector by setting

VCJ. [k] < max{VC(, [k], s (m)[k]} tor each £, after
which 1t executes the first step and delivers the
message to the application.

Enforcing Causal Communication

- Enforcing causal communication.
VC, = (1,0,0) VC, = (1,1,0)

Fo

VC, = (1,1,0)

VC,=(0,0,0) VC,=(1,0,0)

—

1. ts(m)[i] = VG[i]+1

2 conditions: 5)ik < VG [k] for all kei

3. Mutual exclusion

A Centralized Algorithm

A Decentralized Algorithm

A Distributed Algorithm

A Token Ring Algorithm

A Comparison of the Three Algorithms

Mutual Exclusion
3.1. A Centralized Algorithm (1)

@?@

Queue is
/ empty

Coordinator

(@)

- Process 1 asks the coordinator for permission to access
a hared resource. Permission 1s granted.

Mutual Exclusion
A Centralized Algorithm (2)

ORO

Request

/ No reply
Olr

(b)

- Process 2 then asks permission to access the same
resource. The coordinator does not reply.

Mutual Exclusion
A Centralized Algorithm (3)

= When process 1 releases the resource, it tells the
coordinator, which then replies to 2.

@ @ (2

Release
OK

3.2. A Distributed Algorithm (1)

Three different cases:

If the receilver 1s not accessing the resource and does
not want to access it, it sends back an OK message to
the sender.

If the receiver already has access to the resource, it
simply does not reply. Instead, i1t queues the request.

If the receiver wants to access the resource as well but
has not yet done so, 1t compares the timestamp of the
incoming message with the one contained in the
message that 1t has sent everyone. The lowest one
wins.

A Distributed Algorithm (2)

- Two processes want to access a shared resource at
the same moment.

A Distributed Algorithm (3)

- Process 0 has the lowest timestamp, so 1t wins.

Accesses
resource

OK OK

2

(b)

A Distributed Algorithm (4)

= When process 0 1s done, it sends an OK also, so 2
can now go ahead.

OK
@ Accesses
resource

3.3. A Token Ring Algorithm

PPPYYPPY

(@) (b)

= (a) An unordered group of processes on a network.
(b) A logical ring constructed 1n software.

Token Ring algorithm

Initialization

Process O gets token for resource R

Token circulates around ring
From P, to P, ;ymod N

When process acquires token
Checks to see if it needs to enter critical section
If no, send token to neighbor

If yes, access resource

Hold token until done

3.4. Decentralized Algorithm

- Based on the

t
Distributed Hash Table regs .

(DHT) system structure rname
previously introduced E

Peer-to-peer

Obiject names are Cn-1

Co ol
hashed to find the Q O Q
successor node that will

store them E E cee E

mameco rnameil rnamen-1

-1 Here, we assume that »
replicas of each object
are stored

Placing the Replicas

The resource 1s known by a unique name: rname
Replicas: rname-0, rname-I, ..., rname-(n-1)
rname-i is stored at succ(rname-i), where names
and site names are hashed as before

If a process knows the name of the resource it
wishes to access, it also can generate the hash
keys that are used to locate all the replicas

The Decentralized Algorithm

Every replica has a coordinator that controls access
to 1t (the coordinator 1s the node that stores it)

For a process to use the resource 1t must receive
permission from m > n/2 coordinators

This guarantees exclusive access as long as a
coordinator only grants access to one process at a
time

The Decentralized Algorithm

The coordinator notifies the requester when 1t has
been denied access as well as when it 1s granted
Requester must “count the votes”, and decide

whether or not overall permission has been
granted or denied

If a process (requester) gets fewer than m votes it
will wait for a random time and then ask again

4. Election Algorithms

Traditional Election algorithms
The Bully Algorithm
A Ring Algorithm

Election in Wireless Environments

Election in Large-Scale Systems

Election Algorithms

The Bully Algorithm

P sends an ELECTION message to all
processes with higher numbers.

If no one responds, P wins the election and
becomes coordinator.

If one of the higher-ups answers, it takes over.
P’ s job is done.

The Bully Algorithm (1)

©Ye 0Ye @

4 Election >@ OK @ @
&%

O @®@ @

Previous coordinator
has crashed

(a) (b) (c)

Election

= The bully election algorithm. (a) Process 4 holds an
= election. (b) Processes 5 and 6 respond, telling 4 to stop.

= (c) Now 5 and 6 each hold an election.

The Bully Algorithm (2)

- The bully election algorithm. (d) Process 6 tells 5

O ()

OO B &)
@®@ 69

(d) (e)

A Ring Algorithm

- Election algorithm using a ring.

@/ Election message
A 2]
Previous coordinator
has crashed [5,6]
o
\ [2,3]

No response (6

[5]

Elections 1n Wireless Environments (1)

Capacity 8
b
a (6) (1)
4)
(2]
(4

O

j

Election algorithm 1n a wireless network, with node a as the
source. (a) Initial network. (b)—(e) The build-tree phase

Elections 1n Wireless Environments (2)

g receives
broadcast
from b first

c
©
b .
0 e receives
a (1) broadcast from
4)
(4) f
(4) .
j

Elections in Wireless Environments (3)

(¢) The build-tree phase.
(f) Reporting of best node to source.

broadcast

from e first

Elections 1n Large-Scale Systems (1)

Requirements for superpeer selection:

Normal nodes should have low-latency access to
superpeers.

Superpeers should be evenly distributed across the
overlay network.

There should be a predefined portion of superpeers
relative to the total number of nodes in the overlay
network.

Each superpeer should not need to serve more than a
fixed number of normal nodes.

Elections in Large-Scale Systems (2)

C}\ /} Token-holding node

Repulsion Sia
force of Aon C S O Normal node

O ,' a
¥ Resulting movement by which

D will on the token at C is passed to another node
Node D will become token holder —0O D

- Moving tokens in a two-dimensional space using repulsion
forces.

