
CHAPTER 6: 
SYNCHRONIZATION 

DR. TRẦN HẢI ANH 
Based on the lectures of Assoc. Prof. Hà Quốc Trung 



Contents 

¨  Clock synchronization 
¨  Logical clock 
¨  Mutual exclusion 
¨  Election algorithm 



Synchronization 

¨  How process synchronize 
¤ Multiple process to not simultaneously access to the 

same resources: printers, files 
¤ Multiple process are agreed on the ordering of event.  

n Ex: message m1 of P is sent after m2 of Q 

¨  Synchronization based on actual time 
¨  Synchronization by relative ordering 



1. Clock Synchronization 

¨  Notion of synchronization 
¨  Physical Clocks  
¨  Global Positioning System 
¨  Clock Synchronization Algorithms  
¨  Use of Synchronized Clocks  



Why do we need it? 
Example 1: Programming in DS 

¨  When each machine has its own clock, an event that 
occurred after another event may nevertheless be 
assigned an earlier time. 



Example 2: Global Positioning 
System (1) 

Computing a position in a two-dimensional space 



Global Positioning System (2) 

¨  Real world facts that complicate GPS 

1.  It takes a while before data on a 
satellite’s position reaches the receiver. 

2.  The receiver’s clock is generally not in 
synch with that of a satellite. 



Physycal Clocks 

¨  Timer 
¨  Counter & Holding 

register 
¨  Clock tick 
¨  Problem in distributed 

systems: 
¤  How do we synchronize 

them with real-world? 
¤  How do we synchronize 

the clocks with each 
other? 

RTC IC 
(Real Time Clock) 



Physical Clocks (1) 

Computation of the mean solar day 



Physical Clocks (2) 

¨  TAI seconds are of constant length, unlike solar seconds. Leap 
seconds are introduced when necessary to keep in phase with the 
sun. 

¨  => UTC (Universal Cordinated Time)  



Clock Synchronization Algorithms 

¨  Network Time Protocol 
¨  Berkeley Algorithm 
¨  Clock Synchronization in Wireless Networks 



Network Time Protocol 

Getting the current time from a time server 



The Berkeley Algorithm (1) 

¨  The time daemon 
asks all the other 
machines for their 
clock values.  



The Berkeley Algorithm (2) 

¨  The machines 
answer. 



The Berkeley Algorithm (3) 

¨  The time daemon tells 
everyone how to 
adjust their clock. 



Clock Synchronization in Wireless 
Networks (1) 

¨  The usual critical path 
in determining 
network delays.  



Clock Synchronization in Wireless 
Networks (2) 

¨  The critical 
path in the case 
of RBS. 



2. Logical clock  

¨  Lamport logical clocks 
¨  Vector clocks  



2.1. Lamport’s Logical Clocks (1) 

¨  The "happens-before" relation   →   can be 
observed directly in two situations: 
1.  If a and b are events in the same process, and a occurs 

before b, then a → b is true. 
2.  If a is the event of a message being sent by one 

process, and b is the event of the message being 
received by another process, then a → b 

¨  Transitive relation: a → b and b → c, then a → c 
¨  Concurrent 



Lamport’s Logical Clocks (2) 

¨  Three processes, each with its own clock.  
The clocks run at different rates.  



Lamport’s Logical Clocks (3) 

¨  Updating counter Ci for process Pi 
1.  Before executing an event Pi executes  

Ci ← Ci + 1. 
2.  When process Pi sends a message m to Pj, it sets m’s 

timestamp ts (m) equal to Ci after having executed the 
previous step. 

3.  Upon the receipt of a message m, process Pj adjusts its 
own local counter as  
Cj ← max{Cj , ts (m)}, after which it then executes the 
first step and delivers the message to the application. 



Lamport’s Logical Clocks (4) 

¨  Figure 6-10. The positioning of Lamport’s logical  
clocks in distributed systems. 



Lamport’s Logical Clocks (5) 

(b) Lamport’s algorithm corrects the clocks. 



Example: Totally Ordered Multicasting 

Updating a replicated database and leaving it in an 
inconsistent state. 



2.2. Vector Clocks (1) 

¨  Concurrent message transmission using logical 
clocks. 



Vector Clocks (2) 

¨  Vector clocks are constructed by letting each process 
Pi maintain a vector VCi with the following two 
properties: 

1.  VCi [ i ] is the number of events that have occurred so 
far at Pi. In other words, VCi [ i ] is the local logical 
clock at process Pi . 

2.  If VCi [ j ] = k then Pi knows that k events have 
occurred at Pj. It is thus Pi’s knowledge of the local 
time at Pj . 



Vector Clocks (3) 

¨  Steps carried out to accomplish property 2 of previous 
slide: 

1.  Before executing an event Pi executes  
VCi [ i ] ← VCi [i ] + 1. 

2.  When process Pi sends a message m to Pj, it sets m’s 
(vector) timestamp ts (m) equal to VCi after having 
executed the previous step. 

3.  Upon the receipt of a message m, process Pj adjusts its 
own vector by setting  
VCj [k ] ← max{VCj [k ], ts (m)[k ]} for each k, after 
which it executes the first step and delivers the 
message to the application. 



Enforcing Causal Communication 

¨  Enforcing causal communication. 

2 conditions: 



3. Mutual exclusion  

 
¨  A Centralized Algorithm 
¨  A Decentralized Algorithm 
¨  A Distributed Algorithm 
¨  A Token Ring Algorithm 
¨  A Comparison of the Three Algorithms  



Mutual Exclusion 
3.1. A Centralized Algorithm (1) 

¨  Process 1 asks the coordinator for permission to access 
a hared resource. Permission is granted.  



Mutual Exclusion 
A Centralized Algorithm (2) 

¨  Process 2 then asks permission to access the same 
resource. The coordinator does not reply.  



Mutual Exclusion 
A Centralized Algorithm (3) 

¨   When process 1 releases the resource, it tells the 
coordinator, which then replies to 2. 



3.2. A Distributed Algorithm (1) 

¨  Three different cases: 
1.  If the receiver is not accessing the resource and does 

not want to access it, it sends back an OK message to 
the sender. 

2.  If the receiver already has access to the resource, it 
simply does not reply. Instead, it queues the request. 

3.  If the receiver wants to access the resource as well but 
has not yet done so, it compares the timestamp of the 
incoming message with the one contained in the 
message that it has sent everyone. The lowest one 
wins.  



A Distributed Algorithm (2) 

¨  Two processes want to access a shared resource at 
the same moment.  



A Distributed Algorithm (3) 

¨  Process 0 has the lowest timestamp, so it wins.  



A Distributed Algorithm (4) 

¨  When process 0 is done, it sends an OK also, so 2 
can now go ahead. 



3.3. A Token Ring Algorithm 

¨  (a) An unordered group of processes on a network.  
(b) A logical ring constructed in software. 



Token Ring algorithm 

¨  Initialization 
¤ Process 0 gets token for resource R 

¨  Token circulates around ring 
¤ From Pi to P(i+1)mod N 

¨  When process acquires token 
¤ Checks to see if it needs to enter critical section 
¤  If no, send token to neighbor 
¤  If yes, access resource 

n Hold token until done 

P0 

P1 

P2 

P3 

P4 

P5 

token(R) 



3.4. Decentralized Algorithm 

¨  Based on the 
Distributed Hash Table 
(DHT) system structure 
previously introduced 
¤  Peer-to-peer 
¤ Object names are 

hashed to find the 
successor node that will 
store them 

¨  Here, we assume that n 
replicas of each object 
are stored 

…

rname 

rname0 rname1 rnamen-1 

requester 

c0 c1 cn-1 



Placing the Replicas 

¨  The resource is known by a unique name: rname 
¤ Replicas: rname-0, rname-I, …, rname-(n-1) 
¤  rname-i is stored at succ(rname-i), where names 

and site names are hashed as before 
¤  If a process knows the name of the resource it 

wishes to access, it also can generate the hash 
keys that are used to locate all the replicas 



The Decentralized Algorithm 

¨  Every replica has a coordinator that controls access 
to it (the coordinator is the node that stores it) 

¨  For a process to use the resource it must receive 
permission from m > n/2 coordinators 

¨  This guarantees exclusive access as long as a 
coordinator only grants access to one process at a 
time 



The Decentralized Algorithm 

¨  The coordinator notifies the requester when it has 
been denied access as well as when it is granted 
¤ Requester must “count the votes”, and decide 

whether or not overall permission has been 
granted or denied 

¨  If a process (requester) gets fewer than m votes it 
will wait for a random time and then ask again 



4. Election Algorithms 

¨  Traditional Election algorithms 
¤ The Bully Algorithm 
¤ A Ring Algorithm  

¨  Election in Wireless Environments 
¨  Election in Large-Scale Systems  



Election Algorithms  

¨  The Bully Algorithm 
1. P sends an ELECTION message to all 

processes with higher numbers. 
2.  If no one responds, P wins the election and 

becomes coordinator. 
3.  If one of the higher-ups answers, it takes over. 

P’s job is done. 



The Bully Algorithm (1) 

¨  The bully election algorithm. (a) Process 4 holds an 
¨   election. (b) Processes 5 and 6 respond, telling 4 to stop.  
¨  (c) Now 5 and 6 each hold an election. 



The Bully Algorithm (2) 
¨  The bully election algorithm.  (d) Process 6 tells 5 

to stop. (e) Process 6 wins and tells everyone. 



A Ring Algorithm 

¨  Election algorithm using a ring. 



Elections in Wireless Environments (1) 

¨  Election algorithm in a wireless network, with node a as the 
source. (a) Initial network. (b)–(e) The build-tree phase 



Elections in Wireless Environments (2) 

¨  Figure 6-22. Election algorithm in a wireless 
network, with node a as the source. (a) Initial 
network. (b)–(e) The build-tree phase 



Elections in Wireless Environments (3) 

¨  (e) The build-tree phase.  
(f) Reporting of best node to source. 



Elections in Large-Scale Systems (1) 

¨  Requirements for superpeer selection: 
1.  Normal nodes should have low-latency access to 

superpeers. 
2.  Superpeers should be evenly distributed across the 

overlay network. 
3.  There should be a predefined portion of superpeers 

relative to the total number of nodes in the overlay 
network. 

4.  Each superpeer should not need to serve more than a 
fixed number of normal nodes. 



Elections in Large-Scale Systems (2) 

¨  Moving tokens in a two-dimensional space using repulsion 
forces. 


