01010100 CHAPTER 5: NAMING

DR. TRẦN HẢI ANH

ĐAI HOC

BÁCH KHOA

Outline

1.

- Names. Identifiers and Address
- 2. Flat Naming
- 3. Structured Naming

Entity & Name

Entity, A.P

Location independent

Identifier

- □ An identifier refers to at most one entity.
- Each entity is referred to by at most one identifier.
- An identifier always refers to the same entity (it is never reused)

Resolving names and identifiers to addresses

- Name-to-address binding
- Problem: not appropriate to large network
 - Naming systems

8

URI, URL và URN

URI:

• a string of characters used to identify a resource.

□ interact with representations of the resource over a network

URL and URN

■ It comprises 5 parts: scheme, authority, path, query and fragment

 \Box URL:

file:///home/username/RomeoAndJuliet.pdf

10 2. Flat naming

2.1. Definition

- Identifiers are simply random bit strings (unstructured)
- It does not contain any information of location
- Goal: how flat names can be resolved
 - 1. Simple solutions
 - 2. Home-based Approaches
 - 3. Distributed Hash Tables
 - 4. Hierachical Approaches

2.2. Simple Solutions

2.2.1. Broadcasting and Multicasting

2.2.2. Forwarding pointers

2.2.1. Broadcasting and Multicasting

13

Condition: System supports broadcasting facilities:

- A message containing the identifier of the entity is broadcast to each machine.
- Each machine is requested to check whether it has that entity.
- Only the machines that can offer an access point for the entity send a reply message containing the address of that access point.

2.2.1. Broadcasting and Multicasting

Inefficient when the network grows

- Wast network bandwidth by request messages
- Too many hosts may be interrupted by requests they cannot answer.
- ightarrow multicasting

Example: ARP

ARP-Spoofing

2.2.2. Forwarding Pointer

- 17
- When an entity moves from A to B, it leaves behind in A a reference to its new location at B.
- □ Advantage:
 - Simplicity: By using a traditional naming service, a client can look up the current address by following the chain of forwarding pointers.

Drawbacks

- A chain of FP can become so long → locating that entity is expensive.
- All intermediate nodes have to maintain their part of the chain.
- \square Broken links \rightarrow cannot reach the entity

Forwarding Pointer mechanism

Redirecting a FP

2.3. Home-based Approaches

Solution for stable home problem

2.4. Distributed Hash Tables

Chord system

- □ Create the ring with prev(n) and succ(n)
- Use finger table to determine the succ(k) of key k
- □ FTp is the finger table of node p: $FT_p[i] = succ(p+2^{i-1})$
- To look up a key k, node p will then immediately forward the request to node q:

 $q=\!\!FT_{\!p}\left[j\right] \leq k \!<\! FT_{\!p}\left[j\!+\!1\right]$

Update the finger tables after inserting a new node

Chord system with finger tables

2.5. Hierarchical Approaches

An entity having two addresses in different leaf domains

Looking-up

Updating

Structured Name Spaces

A general naming graph

Name Spaces

□ Leaf node:

No outgoing edge

Store information of its address

Directory node:

Outgoing edge

Store a table with info (edge label, node identifier)

Path name: N: <label1, label2, label3, label4, ...>

Absolute path name/Relative path name

Name resolution

- 32
- Consider a path name: N:<label1, label2, ..., labeln>
- Start at node N of the naming graph, where the name label1 is looked up in the directory table, and which returns the identifier of the node to which label1 refers.
- Continue at the identified node by looking up the name label2
- **So on ...**
- **Relatively with the UNIX file system**

General organization of the UNIX file system

File system in UNIX

Directory node (folder)

Disque logique

Disque logique

Hard link

Hard link (cont.)

Soft link

\$ln -s source_file target_file

Soft link

Mounting

Merging

Naming service

Functions:

- Add names
- Remove names
- Look up names
- Naming service is implemented by name servers
- In large-scale distributed systems (many entities, large geographical area) → distribute the implementation of a name space over multiple name servers

Hierarchical organization

Global layer

- root node + directory nodes logically close to the root (children)
- Stability (rarely changed)
- represent organization, or group of organization

Administrational layer

represent groups of entities that belong to the same organization

Managerial layer

consist of nodes that may change regularly

DNS name space

Comparison of three layers

Item	Global	Administrational	Managerial
Geographical scale of network	Worldwide	Organization	Department
Total number of nodes	Few	Many	Vast numbers
Responsiveness to lookups	Seconds	Milliseconds	Immediate
Update propagation	Lazy	Immediate	Immediate
Number of replicas	Many	None or few	None
Is client-side caching applied?	Yes	Yes	Sometimes

Implementation of Name Resolution

- Depend on the distribution of a name space across multiple name servers
- Each client has a name resolver
- **2** ways of implementation of name resolution:
 - Iterative name resolution

46

Recursive name resolution

Iterative name resolution

Recursive name resolution

Recursive vs. iterative name resolution

Example: DNS

DNS Terminology, Components, and Concepts

Top-Level Domain

Hosts

SubDomain

Fully Qualified Domain Name (FQDN)

Name Server

Zone File

Records

Record types

Start of Authority (SOA)

domain.com.	IN SOA nsl.domain.com.	admin.domain.com.	(
		12083 ;	serial number
		3h ;	refresh interval
		30m ;	retry interval
		3w ;	expiry period
		1h ;	negative TTL
)			

A and AAAA Records

host	IN	A	IPv4_address
host	IN	AAAA	IPv6_address

CNAME records

serverl	IN	A	111.111.111.111
www	IN	CNAME	serverl

Record types

MX records

	IN	MX	10	<pre>mail1.domain.com.</pre>
	IN	MX	50	<pre>mail2.domain.com.</pre>
mail1	IN	A		111.111.111.111
mail2	IN	A		222.222.222.222

NS records

	IN	NS	nsl.domain.com.
	IN	NS	ns2.domain.com.
nsl	IN	A	111.222.111.111
ns2	IN	A	123.211.111.233