
CHAPTER 4:
COMMUNICATION

Dr. Trần Hải Anh

1

Outline
2

1.  Fundamentals
2.  Remote Procedure Call
3.  Message-Oriented Communication
4.  Stream-Oriented Communication

1.1. Layered Protocols
1.2. Communication with UDP
1.3. Communication with TCP

1. Fundamentals

I. Layered protocols
4

¨  Agreements are needed at a variety of levels, varying from the low-
level details of bit transmission to the high-level details of how
information is to be expressed.

¨  Protocol
¤  Message format
¤  Message size
¤  Message order
¤  Faults detection method
¤  Etc.

¨  Layered
¨  Protocol types:

¤  Connection oriented/connectionless protocols, Reliable/Unreliable
protocols

¨  Protocol issues:
¤  Send, receive primitives
¤  Synchronous, Asynchronous, Blocking or non-blocking

5

Socket-port
6

message

agreed port any port socket socket

Internet address = 138.37.88.249 Internet address = 138.37.94.248

other ports
client server

TCP Port Numbers and Concurrent
Servers (1)

TCP Port Numbers and Concurrent
Servers (2)

TCP Port Numbers and Concurrent
Servers (3)

TCP Port Numbers and Concurrent
Servers (4)

Buffer Sizes and Limitations

TCP output

UDP output

In Java
14

¨  Class InetAddress:
¨  Working with IP address and domain name
¨  InetAddress aComputer =
InetAddress.getByName("bruno.dcs.qmul.ac.
uk");

1.2. Communication with UDP
15

¨  Characteristics:
¤ Connectionless
¤ Unreliable
¤ Asynchronous

¨  Issues:
¤ Message size
¤ Blocking (non-blocking send ;blocking receive)
¤ Timeouts
¤ Receive from any

16

import java.net.*;
import java.io.*;
public class UDPServer{

 public static void main(String args[]){
 DatagramSocket aSocket = null;
 try{
 aSocket = new DatagramSocket(6789);
 byte[] buffer = new byte[1000];

 while(true){
 DatagramPacket request = new DatagramPacket(buffer,
buffer.length);
 aSocket.receive(request);
 DatagramPacket reply = new DatagramPacket(request.getData(),

 request.getLength(), request.getAddress(), request.getPort());
 aSocket.send(reply);
 }
 }catch (SocketException e){System.out.println("Socket: " + e.getMessage());
 }catch (IOException e) {System.out.println("IO: " + e.getMessage());}
 }finally {if(aSocket != null) aSocket.close();}

 }
}

17

import java.net.*;
import java.io.*;
public class UDPClient{
 public static void main(String args[]){

 // args give message contents and server hostname
 DatagramSocket aSocket = null;
 try {
 aSocket = new DatagramSocket();
 byte [] m = args[0].getBytes();
 InetAddress aHost = InetAddress.getByName(args[1]);
 int serverPort = 6789;
 DatagramPacket request = new DatagramPacket(m, m.length, aHost,

serverPort);
 aSocket.send(request);
 byte[] buffer = new byte[1000];
 DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

 aSocket.receive(reply);
 System.out.println("Reply: " + new String(reply.getData()));
 }catch (SocketException e){System.out.println("Socket: " + e.getMessage());
 }catch (IOException e){System.out.println("IO: " + e.getMessage());}
 }finally {if(aSocket != null) aSocket.close();}

 }
}

1.3. Communication with TCP-IP
 18

A B

SYN

ACK

ACK/SYN

Closing the connection
19

A

FIN

B

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t

closed

Communication with TCP
20

¨  Data type matching
¨  Synchronization
¨  Mutithreaded/Multi-processes server
¨  Reliability

Solutions for some problems
21

Solutions for some problems
22

23

import java.net.*;
import java.io.*;
public class TCPServer {
 public static void main (String args[]) {

 try{ int serverPort = 7896;
 ServerSocket listenSocket = new ServerSocket(serverPort);
 while(true) { Socket clientSocket = listenSocket.accept();
 Connection c = new Connection(clientSocket);}
 } catch(IOException e) {System.out.println("Listen :"+e.getMessage());}}}

class Connection extends Thread {
 DataInputStream in;
 DataOutputStream out;
 Socket clientSocket;
 public Connection (Socket aClientSocket) {
 try { clientSocket = aClientSocket;
 in = new DataInputStream(clientSocket.getInputStream());
 out =new DataOutputStream(clientSocket.getOutputStream());
 this.start();
 } catch(IOException e) {System.out.println("Connection:"+e.getMessage());}}
 public void run(){
 try { // an echo server
 String data = in.readUTF();
 out.writeUTF(data);
 } catch(EOFException e) {System.out.println("EOF:"+e.getMessage());
 } catch(IOException e) {System.out.println("IO:"+e.getMessage());}
 } finally{ try {clientSocket.close();}catch (IOException e){/*close failed*/}}}}

24

import java.net.*;
import java.io.*;
public class TCPClient {

 public static void main (String args[]) {
 // arguments supply message and hostname of destination
 Socket s = null;
 try{
 int serverPort = 7896;
 s = new Socket(args[1], serverPort);
 DataInputStream in = new DataInputStream(s.getInputStream());
 DataOutputStream out =
 new DataOutputStream(s.getOutputStream());
 out.writeUTF(args[0]); // UTF is a string encoding
 String data = in.readUTF();
 System.out.println("Received: "+ data) ;

 }catch (UnknownHostException e){
 System.out.println("Sock:"+e.getMessage());
 }catch (EOFException e){System.out.println("EOF:"+e.getMessage());

 }catch (IOException e){System.out.println("IO:"+e.getMessage());}
 }finally {if(s!=null) try {s.close();}catch (IOException e)

{System.out.println("close:"+e.getMessage());}}
 }
}

2.1. Request-reply protocol
2.2. RPC
2.3. RMI

2. Remote Procedure Call 25

2.1. Request-reply protocol
26

¨  a pattern on top of message passing
¨  support the two-way exchange of messages as

encountered in client-server computing
¨  synchronous
¨  reliable

Request-reply protocol
27

¨  Characteristics:
¤  No need of Acknowledgement
¤  No need of Flow control

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Request

Server Client

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

Trio of communication primitives
28

¨  public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)

¨  public byte[] getRequest ();

¨  public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);

Message structure
29

messageType

requestId

remoteReference

operationId

arguments

int (0=Request, 1= Reply)

int

RemoteRef

int or Operation

array of bytes

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Example: HTTP

GET //www.dcs.qmw.ac.uk/index.html HTTP/ 1.1

URL or pathname method HTTP version headers message body

HTTP/1.1 200 OK resource data

HTTP version status code reason headers message body

HTTP request message

HTTP reply message

Styles of exchange protocols
31

¨  R only protocol
¨  RR protocol
¨  RRA protocol

2.2. RPC (Remote Procedure Call)
32

content
of this
section

Middleware

2.2. Remote Procedure Call

¨  Access transparency
¨  Issues:

¤ Heterogenous system
n Different memory

space
n Different information

representation
¤ Faults appear

33

P1 P2

Machine 1 Machine 2

f(i,j)

Call in C:
34

count = read(fd, buf, nbytes)

Parameters
35

¨  Call-by-value
¨  Call-by-reference
¨  Call-by-copy/restore

¤ Copy the variables to the stack
¤ Copy back after the call, overwrite caller’s the original

value

RPC mechanism
36

Applications

OS

Interface
read(…); etc.

RPC mechanism
37

Problems with parameters passing
38

¨  Copy-by-value
¤ Different value representation

¨  Copy-by-reference
¤ Distributed memory
¤ Copy the array into the message and send it à call-by-

copy/restore

Passing Value Parameters
39

¨  Work well when the end-systems are uniform
¨  Problems:

¤ Different of representation for numbers, characters, and
other data items

Issue: Different character format
40

Intel Pentium (little endian) SPARC (big endian)

Passing Reference Parameters
41

¨  Issue: a pointer is meaningful only within the
address space of the process in which it is being
used.

¨  Solutions:
¤ Forbid pointers and reference parameters à

undesirable
¤ Copy/Restore

n  Issue: costly (bandwidth, store copies)

¨  Unfeasible for structured data

Parameter specification

¨  The caller and the callee
agree on the format of the
messages they exchange.

¨  Agreements:
¤  Message format
¤  Representation of simple

data structures (integers,
characters, Booleans, etc.)

¤  Method for exchanging
messages.

¤  Client-stub and server-stub
need to be implemented.

42

Example: CORBA specification
43

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1984}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5
"Smit"
"h___"
 6
"Lond"
"on__"
1984

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

XML
44

<person id="123456789">
 <name>Smith</name>
 <place>London</place>
 <year>1984</year>
 <!-- a comment -->

</person >

IDL
45

// In file Person.idl
struct Person {
string name; string place; long year;
};
interface PersonList {
readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p); long number();
};

Sun specification
46

/*
 * date.x Specification of the remote date and time server
 */
/*
 * Define two procedures

 * bin_date_1() returns the binary date and time (no arguments)
 * str_date_1() takes a binary time and returns a string
 *
 */
program DATE_PROG {

 version DATE_VERS {
 long BIN_DATE(void) = 1; /* procedure number = 1 */
 string STR_DATE(long) = 2; /* procedure number = 2 */
 } = 1; /* version number = 1 */
} = 0x31234567; /* program number = 0x31234567 */

Openness of RPC
47

¨  Client and Server are installed by different
providers.

¨  Common interface between client and server
¤ Programming language independence
¤ Full description and neutral
¤ Using IDL

Asynchronous RPC
48

¨  Sometimes there is no result to return
¨  After requesting the remote procedure, the caller

continue to do useful work without beeing blocked.

Asynchronous RPC

Các hệ phân tán @ Hà Quốc Trung 2012

49

Deferred synchronous RPC

Implementing RPC in using DCE-RPC
50

2.4. RMI (Remote Method Invocation)
51

¨  RMI vs. RPC
¤ Common points:

n Support programming with interface
n Based on request-reply protocol
n Transparency

¤ Different point:
n Benefits of OOP

Distributed objects model
52

Remote object and Remote interface
53

Characteristics
54

¨  Benefits
¤ Simplicity
¤ Transparency
¤ Reliability
¤ Security (supported by Java)

¨  Drawbacks:
¤ Only support java

RMI Architecture
55

CLIENT SERVER

Application

Stubs Skeletons

Remote Reference Layer

Transport

RMI System

Interface Interface

3.1. Message-oriented transient communication
3.2. Message-oriented persistent communication

3. Message-oriented communication 56

3.1. Message-oriented transient
communication

57

¨  Berkeley Sockets

Introduction

socket function

¨  To perform network I/O, the first thing a process
must do is call the socket function

#include <sys/socket.h>

int socket (int family, int type, int protocol);

¨  Returns: non-negative descriptor if OK, -1 on error

family socket

protocol

connect Function

¨  The connect function is used by a TCP client to establish a
connection with a TCP server.

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *servaddr,
socklen_t addrlen);

¨  Returns: 0 if OK, -1 on error
¨  sockfd is a socket descriptor returned by the socket function
¨  The second and third arguments are a pointer to a socket

address structure and its size.
¨  The client does not have to call bind before calling connect:

the kernel will choose both an ephemeral port and the
source IP address if necessary.

connect Function (2)

¨  Problems with connect function:
1.  If the client TCP receives no response to its SYN segment,

ETIMEDOUT is returned. (If no response is received after a
total of 75 seconds, the error is returned).

2.  If the server's response to the client's SYN is a reset (RST), this
indicates that no process is waiting for connections on the
server host at the port specified (i.e., the server process is
probably not running). Error: ECONNREFSED.

3.  If the client's SYN elicits an ICMP "destination unreachable"
from some intermediate router, this is considered a soft error. If
no response is received after some fixed amount of time (75
seconds for 4.4BSD), the saved ICMP error is returned to the
process as either EHOSTUNREACH or ENETUNREACH.

bind Function

¨  The bind function assigns a local protocol address
to a socket.

#include <sys/socket.h>

int bind (int sockfd, const struct sockaddr *myaddr,
socklen_t addrlen);

¨  Returns: 0 if OK,-1 on error
¨  Example:

listen Function

¨  The listen function is called only by a TCP server.
¨  When a socket is created by the socket function, it is

assumed to be an active socket, that is, a client socket that
will issue a connect.

¨  The listen function converts an unconnected socket into a
passive socket, indicating that the kernel should accept
incoming connection requests directed to this socket.

¨  Move the socket from the CLOSED state to the LISTEN
state.

#include <sys/socket.h>
int listen (int sockfd, int backlog);

¨  Returns: 0 if OK, -1 on error

listen Function (2)

¨  The second argument (backlog) to this function
specifies the maximum number of connections the
kernel should queue for this socket.

The two queues maintained by TCP for a listening socket

listen Function (3)

TCP three-way handshake and the two queues for a listening socket.

accept Function

¨  accept is called by a TCP server to return the next
completed connection from the front of the completed
connection queue.

¨  If the completed connection queue is empty, the process is
put to sleep.

#include <sys/socket.h>

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t
*addrlen);

¨  Returns: non-negative descriptor if OK, -1 on error
¨  The cliaddr and addrlen arguments are used to return the

protocol address of the connected peer process (the client).
¨  addrlen is a value-result argument

accept Function

¨  Example

fork and exec Functions

#include <unistd.h>
pid_t fork(void);

¨  Returns: 0 in child, process ID of child in parent, -1 on error
¨  fork function (including the variants of it provided by some

systems) is the only way in Unix to create a new process.
¨  It is called once but it returns twice.
¨  It returns once in the calling process (called the parent) with a

return value that is the process ID of the newly created process
(the child). It also returns once in the child, with a return value
of 0.

¨  The reason fork returns 0 in the child, instead of the parent's
process ID, is because a child has only one parent and it can
always obtain the parent's process ID by calling getppid.

Example

¨  2 typical uses of fork:
¤ A process makes a copy of itself so that one copy can

handle one operation while the other copy does another
task.

¤ A process wants to execute another program.

Concurrent Servers

¨  fork a child process to handle each client.

Status of client/server before call to
accept returns.

Status of client/server after return
from accept.

Status of client/server after fork
returns.

Status of client/server after parent
and child close appropriate sockets.

close Function

¨  The normal Unix close function is also used to close a
socket and terminate a TCP connection.

#include <unistd.h>

int close (int sockfd);

¨  Returns: 0 if OK, -1 on error
¨  If the parent doesn’t close the socket, when the child

closes the connected socket, its reference count will go
from 2 to 1 and it will remain at 1 since the parent
never closes the connected socket. This will prevent
TCP's connection termination sequence from
occurring, and the connection will remain open.

Message-Passing Interface
77

The socket primitives for TCP/IP

3.2. Message-Oriented Persistent
Communication

78

¨  Very important class of message-oriented
middleware services: Message-Queuing Systems,
or MOM (Message-Oriented Middleware).

¨  Message-Queuing Systems provide extensive
support for persistent asynchronous
communication.

¨  Offer intermediate-term storage capacity for
messages

¨  Latency tolerance
¨  Example: Email system

Message-Queuing System
79

The relationship between queue-level
addressing and network-level addressing

80

Routing with Queueing system
81

Message Broker
82

RabbitMQ
83

4.1. Support for Continuous Media
4.2. Streams and QoS
4.3. Stream synchronization

4. Stream-oriented Communication 84

4.1. Support for Continuous Media
85

¨  The medium of communication
¤ Storage
¤ Transmission
¤ Representation (screen, etc.)

¨  Continuous/discrete media

Data stream
86

¨  Sequence of data units
¨  Can be applied to discrete and continuous media
¨  Timing aspects
¨  A simple stream: only a single sequence of data
¨  A complex stream: several related simple streams
¨  Issues:

¤ Data compression
¤ QoS
¤ Synchronization

Data stream (cont.)
87

A general architecture for streaming stored multimedia
data over a network

4.2. Streams and QoS
88

¨  Quality of Service (QoS):
¤ bit-rate,
¤ delay
¤ e2e delay
¤  jitter
¤  round-trip delay

¨  Based on IP layer
¤ Simple in using best-effort policy

Enforcing QoS
89

¨  Differentiated services

R1 R2

Enforcing QoS (cont.)
90

¨  Using a buffer to reduce jitter

Enforcing QoS (cont.)

Các hệ phân tán @ Trần Hải Anh
2012

91

¨  Forward error correction (FEC)
¤  Interleaved transmission

Labwork
92

4.3. Stream Synchronization
93

¨  Needs of stream synchronization
¨  2 types:

¤ Synchronize discrete data stream and continuous data
stream.

¤ Synchronize 2 continuous data streams.

Explicit synchronization on the level
data units

94

Synchronization as supported by high-
level interfaces

95

