DAIHOC

BACH KHOA

CHAPTER 3:
PROCESSES AND

1R EAL)?

''''''
B~ ¥

Role of OS 1n process management

OS OS

Machine Machine

OS OS

Machine Machine

Virtualization
3|

OS

Machine A Machine B

Outline

Process and Thread
Virtualization
Clients

Servers

Code migration

- 1. Process and Thread

1.1. Introduction

1.2. Threads 1n centralized systems

1.3. Threads in distributed systems

1.1. Introduction

Process

A program 1n execution

Resources
Execution environment, memory space, registers, CPU...
Virtual processors
Virtual memory

Concurrency transparency

Creating a process:
Create a complete independent address space

Allocation = 1nitializing memory segments by zeroing a data segment,
copying the associated program into a text segment, setup a stack for
temporary data

Switching the CPU between processes: Saving the CPU context +
modify registers of MMU, ...

Thread

A thread executes its own piece of code, independently from
other threads.

Process has several threads = multithreaded process
Threads of a process use the process’context together

Thread context: CPU context with some other info for thread
management.

Exchanging info by using shared variable (mutex variable)

Protecting data against inappropriate access by threads within
a single process 1s left to application developers.

Virtual Memory

Virtual memory Mapping Physical memory

Process Memory layout
T

OxFFFFFFFF

Reserved

Growth l Shared libraries

A
Growth Objects
Growth ‘ Heap
Program

Process base address
Growth i Stack

Stack Guard page

Program and Stack memory

MyProgram (executable)

Program’s Program's virtual
virtual memory Mapping Physical memory

int min=10;
int max = 50;

int main () {

memory

Program
code

amin —>»| Program
Emax —P data

Program memory Stack memory

Mapping method

(o)

)
VIRTUAL | MMU

= (Memory
ADDRESS Management

PHYSICAL

ADDRESS

Unit)
_ _#)
READ

WRITE

AJOWHIN

1.2. Thread usage in Nondistributed
Systems

1 Multithreaded

. Process A Process B
program vs multi-
processes program T ihemeispacs | o5 smenomians
space to user space
Switching context iﬁ\;/
Blocking system calls el el

Figure 3-1. Context switching as the result of IPC.

Thread implementation

Thread package:
Creating threads (1)
Destroying threads (2)
Synchronizing threads (3)

(1), (2), (3) can be operated in user mode and kernel
mode:
User mode:
Cheap to create and destroy threads

Easy to switch thread context
Invocation of a blocking system call will block the entire process

Kernel mode:

Lightweight processes (LWP)

- Combining kernel-level lightweight processes and user-level

threads.

User space

Kernel space

Thread state

A

— Thread

LWP executing a thread

Lightweight process

Threads in LINUX

Threads are constructed with POSIX standard
(Portable Operating System Interface for uniX).

Running 1n 2 separated spaces:

User space: use library pthread
Kernel: use LWPs

Mapping 1-1 between 1 thread and 1 LWP

Linux use clone() to generate a thread, instead of
fork().

#include <pthread.h>

#include <stdio.h> ID
#include <stdlib.h>

void * functionl (void *arg)

pthread t tid=pthread self(): manag ement

printf ("In thread %u and process %u\n",tid,getpid()):

) I

void * function2(void *arg)

{
pthread t tid=pthread self():

printf ("In thread %u and process %u\n",tid,getpid()):

int main ()

{

void *status; SIn thread 3086625680 and process 5480
pthread t tidl,tid2: In thread 3076135824 and process 5480
PIEIREEE, CTHE & ClEEn In main thread 3086628544 and process 5480

if (pthread create (&tidl,NULL, functionl,NULL)) {
perror ("Failure") ;
exit(1l):

if (pthread create (&tid2,NULL, function2,NULL)) {
perror ("Failure");
exit (2);

pthread join(tidl,NULL);
pthread join(tid2,NULL);

printf ("In main thread %u and process %u\n",pthread self(),getpid()):

1.3. Threads 1n Disitrubuted Systems

o Single-threaded server
One request at one moment
Sequentially
Do not guaranty the transparency

Multithreaded Client and server

-

Thread 2 makes /
requests to server d
/ Receipt & O / Input-output
Thread 1 queuing
generates \O] O [\ O

results >

Relquestg-/

AN

threads

Client
Server

Server dispatcher

_ Request dispatched
Dispatcher thread to a worker thread

; / Server

Request coming in
from the network >

_—+ Worker thread

Operating system

Multithreaded Server

per-connection threads per-object threads
workers
o (s o— (4 o (—
Q10 / N\ - _P—— 4//0 /’ remote

® /0 / objects o —>p» O objects P _,0 _,O_ objects
° \ 0 o—>» (4 .’4 \O_

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

Finite-state machine

Only one thread

Non-blocking (asynchronous)

Record the state of the current request 1n a table
Simulating threads and their stacks

Example: Node.js
Asynchronous and Event-driven
Single threaded but highly scalable

Comparison

Model | Characleristics

Threads Parallelism, Blocking system calls
Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, Non-blocking system calls

Multithreaded Client

Separate Ul and processing task
Increase the system performance while working
with many servers

E.g. Web browser

Multithreading 1n Java
TR ==,

Runnable

New Thread()

Running

Waiting

Multithreading 1n Java

Creating thread 1n two ways:
Inherit the Thread class

Implement the interface Runnable

Methods:

getName(): It 1s used for Obtaining a thread’s name
getPriority(): Obtain a thread’s priority

1sAlive(): Determine 1if a thread is still running
join(): Wait for a thread to terminate

run(): Entry point for the thread

sleep(): suspend a thread for a period of time
start(): start a thread by calling its run() method

Multithreading 1n Java

class RunnableDemo implements Runnable {

m private Thread t;

private String threadName;

RunnableDemo(String name){
threadName = name;
System.out.println("Creating " + threadName);
}
public void run() {
System.out.println("Running " + threadName);
try {
for(int i = 4; 1 > 0; i--) {
System.out.println("Thread: " + threadName + ", " + i);
// Let the thread sleep for a while.
Thread.sleep(590);
}
} catch (InterruptedException e) {
System.out.println("Thread " + threadName + " interrupted.”);

iystem.out.println(“Thread " + threadName + " exiting.");
}
public void start ()
{
System.out.println("Starting " + threadName);
if (t == null)
{
t = new Thread (this, threadName);
t.start ();
}
}

Multithreading 1n Java

public class TestThread {
public static void main(String args[]) {

RunnableDemo R1
Rl.start();

new RunnableDemo("Thread-1");

RunnableDemo R2 = new RunnableDemo("Thread-2"); Creating Thread-1
R2.start(); Starting Thread-1

} Creating Thread-2

} Starting Thread-2

Running Thread-1
Thread: Thread-1, 4
Running Thread-2
Thread: Thread-2,
Thread: Thread-1,
> Thread: Thread-2,
Thread: Thread-1,
Thread: Thread-2,
Thread: Thread-1,
Thread: Thread-2, 1

Thread Thread-1 exiting.
Thread Thread-2 exiting.

R NN W W N

- 2. Virtualization

2.1. The Role of Virtualization in Distributed
Systems

2.2. Architectures of Virtual Machines

2.1. Role of Virtualization

In the 1970s, 1t allows legacy software to run on
expensive mainframe hardware

As hardware became cheaper, virtualization
became less of an issue.

Since the late 1990s, while hardware change
reasonably fast, software is much more stable =
needs of virtualization

Diversity of platforms and machines can be
reduced by letting each app run on its own virtual
machine, which run on a common platform.

How Virtualization works?
| 30 |

Program

Program Interface A

Implementation of

Interface A mimicking A on B

f o o o e e e e e e e e e e e e o o e -

Hardware/software system A | [______ Interface B~

Hardware/software system B

(a)

(b)

2.2. Architectures of VMs

- - Application
Library functions
Y \\I I
Library
System calls
|
Privileged Operating system General
instructions T4 - 5 =— instructions
Hardware

Interfaces offered by computer systems

Process Virtual Machine
o2 4

Application | L[

Runtime system

Operating system |

Hardware

(a)

Java — Platform independent language

Source code

Virtual Machine Monitor
| 34|

Applications

Operating system

—

Virtual machine monitor

Hardware

(b)

Hypervisor

Type 1: Bare-metal supervisor

LinuxVM

Windows VM

Hypervisor

Hardware

Ex: ESXi (Vmware vSphere)

Type 2

0 LinuxVM

Windows VM

Hypervisor

Host OS

Hardware

Ex: Vmware, VirtualBox

Network Function Virtualization

=N Classic Network NFV Approach

Appliance Approach
Hardware-Based Appliances

: u Virtualized Apphances

NFV enables virtualized network functions to
run over an open hardware platform, reducing
CapEx, OpEx, and accelerating innovation.

-]
High Volume, Standard Server
| e
o il === o
ney —

High Volume, Standard Storage

Fragmented Non-Standard
Hardware High Volume, Standard Switch

Network Functions

Provider Network l

Customer Premises

Carrier . Encryption
Grade NAT

Firewall n

DNS

=" hi

DPI

PE Router c’wn

e :
Network Functions

Carrier
Grade NAT

DNS

Customer Premises

Firewall

=

DPI

Encryption

1
)

BRAS

PE Router

Provider Network

= Fragmented, purpose-built hardware

= Physical install per appliance per site

= Difficult upgrades

-

Increased OPEX

ciena

En
Network Function Virtualization

Provider Network

Virtual CPE

E — Encryption
Carrier - Encryption
Grade NAT

Firewall m
‘Iﬂnul‘
ER

Customer Premises

DNS
e -

DPI
PE Router Switches Storage Servers
_ < _ ciena

0
Deploying Network Functions

Data Center

VIM Compute

Controller ‘
DNSEMS | [Firewall EMS E"Cm;'m

Firewall DNS Encryption Firewall DNS Encryption

Hypervisor Hypervisor

x86 Server x86 Server

|

vCPE using a compute node

Headquarters Branch Office

ciena

s

3.1. Networked User Intertaces

Client machine

Application

Server machine

Client machine

A

Middleware

Local bS

Application-

- specific

protocol

(a)

Server machine

»| Application Appl. I Application- Appl. n
L i ' independent A
Middleware Middleware protocol Middleware
Local OS

Local OS

“Network

A networked app with its
own protocol

(b)

Network

Thin-client approach

X Window System

|43
Application server Application server User's terminal
Window Application | | wiib interface
manager d
Xiib A Xlib A
Local OS Local OS X protocol | 7 ,‘
k . ‘ X kernel

Device drivers

Terminal (includes display
keyboard, mouse, etc.)

Thin-client Network Computing

X-client versus X-server

Applications manipulate a display using the
specific display commands as offered by X.

Applications written for X should preferably
separate application logic from user-interface
commands -2 not applicable

Solution: compress X message

Example: a program X-client using
Xlib

#include <X11/Xlib.h> // Every Xlib program must include this
#include <assert.h> // I include this to test return values the lazy way
#include <unistd.h> // So we got the profile for 10 seconds

#define NIL (0) // A name for the void pointer

main()

{
// Open the display
Display *dpy = XOpenDisplay(NIL);
assert(dpy);

// Get some colors
int blackColor = BlackPixel(dpy, DefaultScreen(dpy));
int whiteColor = WhitePixel(dpy, DefaultScreen(dpy));

// Create the window
Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), 0, 0,
200, 100, 0, blackColor, blackColor);

Example: a program X-client using
Xlib

// We want to get MapNotify events
XSelectInput(dpy, w, StructureNotifyMask);

// "Map" the window (that is, make it appear on the screen)
XMapWindow(dpy, w);

// Create a "Graphics Context”
GC gc = XCreateGC(dpy, w, 0, NIL);

// Tell the GC we draw using the white color
XSetForeground(dpy, gc, whiteColor);

// Wait for the MapNotify event
for(;;) {
XEvent ¢;
XNextEvent(dpy, &e);
if (e.type == MapNotify)
break;

Example: a program X-client using
Xlib

// Draw the line

XDrawLine(dpy, w, gc, 10, 60, 180, 20);

// Send the "DrawLine" request to the server
XFlush(dpy);

// Wait for 10 seconds
sleep(10);

3.2. Client-side software for
distribution transparency

*» Transparent distribution:
s Transparent access
s Transparent migration
s Transparent replication
ss Transparent faults

Client machine Server 1 Server 2 | Server 3
Client Server Server Server
appl appl appl appl

I

Z al

Client side handles

request replication Replicated request

“ 4. Servers

General design 1ssues

4.1. General design 1ssues

= Organize server
Iterative server
Concurrent server

o Find server:
End-point (port)
Deamon
Superserver

o Interrupt server

1 Stateless & stateful
server

Server machine

Client machine

2. Request
service

Client &
_—

Server M

1. Ask for
end point

=y

Daemon

(a)

Server machine

Client machine

2. Continue
service

Client |«
—

Actual
server

/!

1. Request

service

Super-
server

(b)

Register
end point

~ End-point
table

Create
server for
requested
service

Inetd

|51
- Configuration info 1n the file /etc/inetd.conf

do not wait path parameter

service name

username
socket and

protocol

Example:

I
0 A program errorLogger.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
const char *fn = argv([l];
FILE *fp = fopen(fn, "a+");

if(fp == NULL)
exit (EXIT FAILURE);

char str([4096]);

//inetd passes its information to us in stdin.

while(fgets(str, sizeof(str), stdin)) {
fputs(str, fp);
fflush(fp);

}

fclose(fp):;

return 0;

Configure netd

Insert info into /etc/services
errorLogger 9999/udp

Insert info into /etc/inetd.conf

errorLogger dgram udp wait root /usr/local/
bin/errlogd errlogd /tmp/logfile.txt

- 5. Code migration

Why?

Improve performance
Server code to client
Client code to server
Exploiting parallelism

Code migration models

- Alternatives for code migration.

Weak mobility

Mobility mechanism

Strong mobility

Execute at
Sender-initiated - target process
mobility . Execute in

separate process

Execute at
Receiver-initiated .— target process
mobility “~_ Execute in

separate process

Migrate process
Sender-initiated J g

mobility
Clone process

Migrate process
Receiver-initiated / g P

mobility ~_

Clone process

