
CHAPTER 3: 
PROCESSES AND 

THREADS 
Dr. Trần Hải Anh 

1 



Role of OS in process management  
2 

OS 

P

P
P

P

Machine 

OS 

P

P
P

P

Machine 

OS 

P

P
P

P

Machine 

OS 

P

P
P

P

Machine 

OS 

P

P
P

P

Machine 



Virtualization 
3 

OS 

P

P
P

P

Machine A Machine B 



Outline 
4 

1.  Process and Thread 
2.  Virtualization 
3.  Clients 
4.  Servers 
5.  Code migration 



1.1. Introduction 
1.2. Threads in centralized systems 
1.3. Threads in distributed systems 

1. Process and Thread 



1.1. Introduction 
6 

¨  Process 
¤  A program in execution 
¤  Resources 

n  Execution environment, memory space, registers, CPU... 
n  Virtual processors 
n  Virtual memory 

¤  Concurrency transparency 
¤  Creating a process: 

n  Create a complete independent address space 
n  Allocation = initializing memory segments by zeroing a data segment, 

copying the associated program into a text segment, setup a stack for 
temporary data 

¤  Switching the CPU between processes: Saving the CPU context + 
modify registers of MMU, ... 



Thread 
7 

¨  A thread executes its own piece of code, independently from 
other threads. 

¨  Process has several threads à multithreaded process 
¨  Threads of a process use the process’context together 
¨  Thread context: CPU context with some other info for thread 

management. 
¨  Exchanging info by using shared variable (mutex variable) 
¨  Protecting data against inappropriate access by threads within 

a single process is left to application developers. 



Virtual Memory 
8 



Process Memory layout 
9 



Program and Stack memory 
10 

Program memory Stack memory 



Mapping method 
11 



1.2. Thread usage in Nondistributed 
Systems 
¨  Multithreaded 

program vs multi-
processes program 
¤ Switching context 
¤ Blocking system calls 

12 



Thread implementation 
13 

¨  Thread package: 
¤  Creating threads (1) 
¤  Destroying threads (2) 
¤  Synchronizing threads (3) 

¨  (1), (2), (3) can be operated in user mode and kernel 
mode: 
¤  User mode: 

n  Cheap to create and destroy threads 
n  Easy to switch thread context 
n  Invocation of a blocking system call will block the entire process 

¤  Kernel mode:  



Lightweight processes (LWP) 
14 

¨  Combining kernel-level lightweight processes and user-level 
threads. 



Threads in LINUX 
15 

¨  Threads are constructed with POSIX standard 
(Portable Operating System Interface for uniX). 

¨  Running in 2 separated spaces:  
¤ User space: use library pthread  
¤ Kernel: use LWPs 

¨  Mapping 1-1 between 1 thread and 1 LWP 
¨  Linux use clone() to generate a thread, instead of 

fork(). 



ID 
management 

16 



1.3. Threads in Disitrubuted Systems 
17 

¨  Single-threaded server 
¤ One request at one moment 
¤ Sequentially 
¤ Do not guaranty the transparency 



Multithreaded Client and server 
18 

Server 

N threads 

Input-output 

Client 

Thread 2 makes 

T1 

Thread 1 

requests to server 

generates  
results 

Requests 

Receipt & 
queuing 



Server dispatcher 
19 



Multithreaded Server 
20 

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remoteremote I/O

per-connection threads per-object threads

objects objects objects



Finite-state machine  
21 

¨  Only one thread 
¨  Non-blocking (asynchronous) 
¨  Record the state of the current request in a table 
¨  Simulating threads and their stacks 
¨  Example: Node.js 

¤ Asynchronous and Event-driven 
¤ Single threaded but highly scalable 



Comparison 
22 

Model Characteristics 

Threads Parallelism, Blocking system calls 

Single-threaded process No parallelism, blocking system calls 

Finite-state machine Parallelism, Non-blocking system calls 



Multithreaded Client 
23 

¨  Separate UI and processing task 
¨  Increase the system performance while working 

with many servers 
¨  E.g. Web browser 



Multithreading in Java 
24 



Multithreading in Java 
25 

¨  Creating thread in two ways: 
¤  Inherit the Thread class 
¤  Implement the interface Runnable 

¨  Methods: 
¤  getName(): It is used for Obtaining a thread’s name 
¤  getPriority(): Obtain a thread’s priority 
¤  isAlive(): Determine if a thread is still running 
¤  join(): Wait for a thread to terminate 
¤  run(): Entry point for the thread 
¤  sleep(): suspend a thread for a period of time 
¤  start(): start a thread by calling its run() method 



Multithreading in Java 
26 



Multithreading in Java 
27 



2.1. The Role of Virtualization in Distributed 
Systems 

2.2. Architectures of Virtual Machines 
 

2. Virtualization 



2.1. Role of Virtualization 
29 

¨  In the 1970s, it allows legacy software to run on 
expensive mainframe hardware 

¨  As hardware became cheaper, virtualization 
became less of an issue. 

¨  Since the late 1990s, while hardware change 
reasonably fast, software is much more stable à 
needs of virtualization 

¨  Diversity of platforms and machines can be 
reduced by letting each app run on its own virtual 
machine, which run on a common platform. 



How Virtualization works? 
30 



2.2. Architectures of VMs 
31 

Interfaces offered by computer systems 



Process Virtual Machine 
32 



Java – Platform independent language 
33 



Virtual Machine Monitor 
34 



Hypervisor 
35 

Type 1: Bare-metal supervisor Type 2 

Hardware Hardware 

Hypervisor Host OS 

Hypervisor 

VM1 

VM2 

Windows VM 

LinuxVM 

VM
1 

VM
2 

Windows VM 

LinuxVM 

App App 

Ex: ESXi (Vmware vSphere) Ex: Vmware, VirtualBox 



Network Function Virtualization 
36 



37 



38 



39 



40 



3. Clients 41 



3.1. Networked User Interfaces 
42 

A networked app with its 
own protocol 

Thin-client approach 



X Window System 
43 



Thin-client Network Computing 
44 

¨  X-client versus X-server 
¨  Applications manipulate a display using the 

specific display commands as offered by X. 
¨  Applications written for X should preferably 

separate application logic from user-interface 
commands à not applicable 

¨  Solution: compress X message 



Example: a program X-client using 
Xlib 

45 

#include <X11/Xlib.h> // Every Xlib program must include this 
#include <assert.h>   // I include this to test return values the lazy way 
#include <unistd.h>   // So we got the profile for 10 seconds 
 
#define NIL (0)       // A name for the void pointer 
 
main() 
{ 
      // Open the display 
      Display *dpy = XOpenDisplay(NIL); 
      assert(dpy); 
 
      // Get some colors 
      int blackColor = BlackPixel(dpy, DefaultScreen(dpy)); 
      int whiteColor = WhitePixel(dpy, DefaultScreen(dpy)); 
 
      // Create the window 
      Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), 0, 0,  

         200, 100, 0, blackColor, blackColor); 



Example: a program X-client using 
Xlib 

46 

// We want to get MapNotify events 
      XSelectInput(dpy, w, StructureNotifyMask); 
 
      // "Map" the window (that is, make it appear on the screen) 
      XMapWindow(dpy, w); 
 
      // Create a "Graphics Context” 
      GC gc = XCreateGC(dpy, w, 0, NIL); 
 
      // Tell the GC we draw using the white color 
      XSetForeground(dpy, gc, whiteColor); 
 
      // Wait for the MapNotify event 
      for(;;) { 

     XEvent e; 
     XNextEvent(dpy, &e); 
     if (e.type == MapNotify) 
    break; 

      } 



Example: a program X-client using 
Xlib 

47 

      // Draw the line  
      XDrawLine(dpy, w, gc, 10, 60, 180, 20); 
 
      // Send the "DrawLine" request to the server 
      XFlush(dpy); 
 
      // Wait for 10 seconds 
      sleep(10); 
} 



3.2. Client-side software for 
distribution transparency 

48 

v Transparent distribution: 
v Transparent access 
v Transparent migration 
v Transparent replication 
v Transparent faults 

 



General design issues 
 
 

4. Servers 49 



4.1. General design issues 

¨  Organize server 
¤  Iterative server 
¤  Concurrent server 

¨  Find server: 
¤  End-point (port) 
¤  Deamon 
¤  Superserver 

¨  Interrupt server 
¨  Stateless & stateful 

server 

50 



Inetd 
51 

¨  Configuration info in the file /etc/inetd.conf 

service name 

socket and 
 protocol 

do not wait 

username 

path parameter 



Example: 
52 

¨  A program errorLogger.c  



Configure inetd 
53 

¨  Insert info into /etc/services 
errorLogger 9999/udp 

¨  Insert info into /etc/inetd.conf 
errorLogger dgram udp wait root /usr/local/
bin/errlogd errlogd /tmp/logfile.txt 



5. Code migration 



Why? 
55 

¨  Improve performance 
¤ Server code to client 
¤ Client code to server 
¤ Exploiting parallelism 

 



Code migration models 
56 

¨  Alternatives for code migration. 


