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Role of OS in process management  
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Outline 
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1.  Process and Thread 
2.  Virtualization 
3.  Clients 
4.  Servers 
5.  Code migration 



1.1. Introduction 
1.2. Threads in centralized systems 
1.3. Threads in distributed systems 

1. Process and Thread 



1.1. Introduction 
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¨  Process 
¤  A program in execution 
¤  Resources 

n  Execution environment, memory space, registers, CPU... 
n  Virtual processors 
n  Virtual memory 

¤  Concurrency transparency 
¤  Creating a process: 

n  Create a complete independent address space 
n  Allocation = initializing memory segments by zeroing a data segment, 

copying the associated program into a text segment, setup a stack for 
temporary data 

¤  Switching the CPU between processes: Saving the CPU context + 
modify registers of MMU, ... 



Thread 
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¨  A thread executes its own piece of code, independently from 
other threads. 

¨  Process has several threads à multithreaded process 
¨  Threads of a process use the process’context together 
¨  Thread context: CPU context with some other info for thread 

management. 
¨  Exchanging info by using shared variable (mutex variable) 
¨  Protecting data against inappropriate access by threads within 

a single process is left to application developers. 



Virtual Memory 
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Process Memory layout 
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Program and Stack memory 
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Program memory Stack memory 



Mapping method 
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1.2. Thread usage in Nondistributed 
Systems 
¨  Multithreaded 

program vs multi-
processes program 
¤ Switching context 
¤ Blocking system calls 
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Thread implementation 
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¨  Thread package: 
¤  Creating threads (1) 
¤  Destroying threads (2) 
¤  Synchronizing threads (3) 

¨  (1), (2), (3) can be operated in user mode and kernel 
mode: 
¤  User mode: 

n  Cheap to create and destroy threads 
n  Easy to switch thread context 
n  Invocation of a blocking system call will block the entire process 

¤  Kernel mode:  



Lightweight processes (LWP) 
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¨  Combining kernel-level lightweight processes and user-level 
threads. 



Threads in LINUX 
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¨  Threads are constructed with POSIX standard 
(Portable Operating System Interface for uniX). 

¨  Running in 2 separated spaces:  
¤ User space: use library pthread  
¤ Kernel: use LWPs 

¨  Mapping 1-1 between 1 thread and 1 LWP 
¨  Linux use clone() to generate a thread, instead of 

fork(). 



ID 
management 
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1.3. Threads in Disitrubuted Systems 
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¨  Single-threaded server 
¤ One request at one moment 
¤ Sequentially 
¤ Do not guaranty the transparency 



Multithreaded Client and server 
18 

Server 

N threads 

Input-output 

Client 

Thread 2 makes 

T1 

Thread 1 

requests to server 

generates  
results 

Requests 

Receipt & 
queuing 



Server dispatcher 
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Multithreaded Server 
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a. Thread-per-request b. Thread-per-connection c. Thread-per-object
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Finite-state machine  
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¨  Only one thread 
¨  Non-blocking (asynchronous) 
¨  Record the state of the current request in a table 
¨  Simulating threads and their stacks 
¨  Example: Node.js 

¤ Asynchronous and Event-driven 
¤ Single threaded but highly scalable 



Comparison 
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Model Characteristics 

Threads Parallelism, Blocking system calls 

Single-threaded process No parallelism, blocking system calls 

Finite-state machine Parallelism, Non-blocking system calls 



Multithreaded Client 
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¨  Separate UI and processing task 
¨  Increase the system performance while working 

with many servers 
¨  E.g. Web browser 



Multithreading in Java 
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Multithreading in Java 
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¨  Creating thread in two ways: 
¤  Inherit the Thread class 
¤  Implement the interface Runnable 

¨  Methods: 
¤  getName(): It is used for Obtaining a thread’s name 
¤  getPriority(): Obtain a thread’s priority 
¤  isAlive(): Determine if a thread is still running 
¤  join(): Wait for a thread to terminate 
¤  run(): Entry point for the thread 
¤  sleep(): suspend a thread for a period of time 
¤  start(): start a thread by calling its run() method 



Multithreading in Java 
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Multithreading in Java 
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2.1. The Role of Virtualization in Distributed 
Systems 

2.2. Architectures of Virtual Machines 
 

2. Virtualization 



2.1. Role of Virtualization 
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¨  In the 1970s, it allows legacy software to run on 
expensive mainframe hardware 

¨  As hardware became cheaper, virtualization 
became less of an issue. 

¨  Since the late 1990s, while hardware change 
reasonably fast, software is much more stable à 
needs of virtualization 

¨  Diversity of platforms and machines can be 
reduced by letting each app run on its own virtual 
machine, which run on a common platform. 



How Virtualization works? 
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2.2. Architectures of VMs 
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Interfaces offered by computer systems 



Process Virtual Machine 
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Java – Platform independent language 
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Virtual Machine Monitor 
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Hypervisor 
35 

Type 1: Bare-metal supervisor Type 2 

Hardware Hardware 

Hypervisor Host OS 

Hypervisor 
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Windows VM 

LinuxVM 
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App App 

Ex: ESXi (Vmware vSphere) Ex: Vmware, VirtualBox 



Network Function Virtualization 
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3. Clients 41 



3.1. Networked User Interfaces 
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A networked app with its 
own protocol 

Thin-client approach 



X Window System 
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Thin-client Network Computing 
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¨  X-client versus X-server 
¨  Applications manipulate a display using the 

specific display commands as offered by X. 
¨  Applications written for X should preferably 

separate application logic from user-interface 
commands à not applicable 

¨  Solution: compress X message 



Example: a program X-client using 
Xlib 
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#include <X11/Xlib.h> // Every Xlib program must include this 
#include <assert.h>   // I include this to test return values the lazy way 
#include <unistd.h>   // So we got the profile for 10 seconds 
 
#define NIL (0)       // A name for the void pointer 
 
main() 
{ 
      // Open the display 
      Display *dpy = XOpenDisplay(NIL); 
      assert(dpy); 
 
      // Get some colors 
      int blackColor = BlackPixel(dpy, DefaultScreen(dpy)); 
      int whiteColor = WhitePixel(dpy, DefaultScreen(dpy)); 
 
      // Create the window 
      Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), 0, 0,  

         200, 100, 0, blackColor, blackColor); 



Example: a program X-client using 
Xlib 
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// We want to get MapNotify events 
      XSelectInput(dpy, w, StructureNotifyMask); 
 
      // "Map" the window (that is, make it appear on the screen) 
      XMapWindow(dpy, w); 
 
      // Create a "Graphics Context” 
      GC gc = XCreateGC(dpy, w, 0, NIL); 
 
      // Tell the GC we draw using the white color 
      XSetForeground(dpy, gc, whiteColor); 
 
      // Wait for the MapNotify event 
      for(;;) { 

     XEvent e; 
     XNextEvent(dpy, &e); 
     if (e.type == MapNotify) 
    break; 

      } 



Example: a program X-client using 
Xlib 
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      // Draw the line  
      XDrawLine(dpy, w, gc, 10, 60, 180, 20); 
 
      // Send the "DrawLine" request to the server 
      XFlush(dpy); 
 
      // Wait for 10 seconds 
      sleep(10); 
} 



3.2. Client-side software for 
distribution transparency 
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v Transparent distribution: 
v Transparent access 
v Transparent migration 
v Transparent replication 
v Transparent faults 

 



General design issues 
 
 

4. Servers 49 



4.1. General design issues 

¨  Organize server 
¤  Iterative server 
¤  Concurrent server 

¨  Find server: 
¤  End-point (port) 
¤  Deamon 
¤  Superserver 

¨  Interrupt server 
¨  Stateless & stateful 

server 
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Inetd 
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¨  Configuration info in the file /etc/inetd.conf 

service name 

socket and 
 protocol 

do not wait 

username 

path parameter 



Example: 
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¨  A program errorLogger.c  



Configure inetd 
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¨  Insert info into /etc/services 
errorLogger 9999/udp 

¨  Insert info into /etc/inetd.conf 
errorLogger dgram udp wait root /usr/local/
bin/errlogd errlogd /tmp/logfile.txt 



5. Code migration 



Why? 
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¨  Improve performance 
¤ Server code to client 
¤ Client code to server 
¤ Exploiting parallelism 

 



Code migration models 
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¨  Alternatives for code migration. 


